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Abstract. In this text we present the results of oculometric experiment
consisting the registration of anitsaccades of patients with Parkinson’s
Disease (PD) in relation to their neurological data. PD is an important
and incurable neurodegenerative disease and we are looking for methods
optimizing the treatment. In our previous works we used Reflexive Sac-
cades (RS) and Pursuit Ocular Movements (POM) to check what it can
tell us about the disease’s progression expressed in the Unified Parkin-
son’s Disease Rating Scale (UPDRS). The UPDRS is the most commonly
used scale in the clinical studies of Parkinson’s disease. In this experi-
ment we examined antisaccades (AS) of 11 PD patients who performed
eye movement tests in controlled conditions. We correlated neurologi-
cal measurements of patient’s motoric abilities and data describing their
treatment with values of AS parameters. We used RSES and for predic-
tion of the UPDRS scoring groups and Weka methods for presentation of
the results. We achieved good results with accuracy of 91% and coverage
of 100%. The AS test is a relatively easy and non-invasive method that
can be used in the telemedicine in the future.

Keywords: Parkinson’s disease + Antisaccades + Eye tracking -
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1 Introduction

Antisaccade is a voluntary eye move in the opposite direction of appearing target
[8]. Subject have to suppress a glance towards a suddenly presented peripheral
stimulus and look away from it to the mirror location [13]. The eye move schema
is presented in Fig. 1. Antisaccades are generally more difficult than eye move
towards the stimuli (prosaccades) for some PD patients even impossible to per-
form. The performance of antisaccades is influenced by parameters interacting
with the fixation and/or attention system of oculomotor control [9]. Olk and
Kingstone [10] assumed in their research, that prosaccades to new objects are
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made reflexively and for antisaccades, this reflexive eye movement have to be
inhibited thus antisaccades are generated volitionally. This oculomotor inhibi-
tion is the main factor leading to long antisaccade latency causing that anti-
saccades are generally slower than prosaccades. Inhibition is being produced by
the reallocation of covert attention from the target location towards the oppo-
site antisaccade location [10]. The prefrontal cortex (PFC) is being found to
be crucial for control of reflexive behavior allowing for voluntary reaction [13].
Brain imaging studies showed that cortical and subcortical network is widely
active during the generation of antisaccades [15]. The interesting finding has
been made by Fischer and Weber [9] who observed that parameters supporting
the disengagement of fixation at the time of stimulus onset provoke a reduction
of the antisaccadic reaction times and that certain state of disengagement seems
to facilitate the occurrence of reflex-like errors.

The ability to suppress reflexive responses in favor of voluntary motor acts
is very important for everyday life and variety of neurological diseases result in
dysfunctions and errors of this mechanism, what can be observed in the volun-
tary eye move tasks [15]. In terms of PD disease, various studies have shown that
patients have impaired executive function, including deficits in attention, move-
ment initiation, motor planning and decision making leading to impairments
in controlling involuntary behavior [12,17]. Such dysfunctions plays important
role during execution of voluntary eye movements and resulting in difficulties,
as antisaccade requires suppression of an automatic eye movement to a visual
stimulus and execute a voluntary eye movement in the opposite direction [17].
Antisaccade deficits in PD have been attributed to fronto-basal ganglia (BG)
dysfunction and are similar to those seen in the task switching, whereby one is
required to change a response after performing a different behavior [17]. Crevits
et al. [11] observed that the degree of advancement of Parkinson’s disease sig-
nificantly increases mean latencies and error rate in the antisaccade tasks. Anti-
saccades in PD has been described as abnormal, multiple-step and hypometric
and associated with a significant decrease in the velocity [14]. PD patients are
treated medically or by stimulation of the Subthalamic Nucleus (STN) with an
electrode (Deep Brain Stimulation - DBS). In terms of medical treatment, Hood
et al. [12] found that Levodopa (L-Dopa) commonly used to improve the symp-
toms of Parkinson’s disease significantly reduces error rate for antisaccades and
suggests that L-Dopa improves function of the voluntary frontostriatal system,
which is deficient in PD. It has been also observed that PD patients in the med-
icated state are better able to plan and execute antisaccades [12]. In contrast to
L-Dopa, electrical stimulation of the STN, the alternative method to the medical
treatment, has been found to have no effect on the antisaccade task. According
to Rivaud-Péchoux, et al. [16] STN stimulation improves only the accuracy of
the memory guided saccades.

The UPDRS becomes common rating scale of the progression of a Parkinson’s
disease among neurologists and researchers who want to carry out measurements
with objective instruments [5]. It consists of 42 items divided into 4 sections [6].
First 2 sections consist scoring of personal behavior, mood, mental activity and
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activities of daily living. Next 2 sections consist examination of patient’s motor
fitness and difficulties during the treatment. In our experiment we decided to
compare the results of Sects.3 and 4 of UPDRS examination with the results
of the oculomotor study. The UPDRS III includes clinician-scored monitored
motor evaluation and evaluation of complications during the therapy (UPDRS
IV) [7]. The UPDRS III refers directly to motor results an UPDRS IV to motor
fluctuations, both might have direct correlation with the patient’s oculomotor
abilities.

The problem in evaluating the scale of Parkinson’s disease progression lies
in the very individual symptoms of this disease. Every patient diverge substan-
tially in his combinations of symptoms, rates of progression, and reactions to
treatment [4]. In the experiment we wanted to check the effectiveness of predic-
tions of neurological evaluations, represented by Sects. 3 and 4. We tried to find
out whether there are correlations between the antisaccade parameters collected
from oculometric tests and data from the neurological classifications. We used
combined results of neurological diagnoses as decision attributes along with ocu-
lometric measurements as conditions expressed in the parameters. With such
approach we researched correlations between both sources of the data. The aim
of this experiment was to test algorithms, allowing for machine-learning eval-
uation of the UPDRS III and IV, based on type of the treatment and results
of the anitsaccade trials. We believe that methods of predictions like presented
in this article might extend available data of patient, if patients could perform
oculomotor tests using their personal devices in different conditions, not only
in the clinical settings. Data evaluation presented in this article could be auto-
mated by open-access software running on personal device like PC, tablet or a
smart-phone.

2 Methods of the Experiment

We examined 11 patients in the clinical conditions. Patients underwent experimen-
tal trials under the supervision of a doctor. Results of patients were collected and
divided according to their treatment. Our data distinguished patients who undergo
pharmacological (BMT - Best Medical Treatment) treatment basing on the med-
ication of the L-Dopa and the DBS (Deep Brain Stimulation). Patients qualified
for DBS surgery are mainly characterized by low sensitivity to L-Dopa [4].

Possible variants of those two parameters described types of different sessions
in which the results of patients were considered:

— S1: No treatment - (BMT Off, DBS Off)

S2: Patients undergo only non-pharmacological treatment (BMT Off, DBS
On)

— S3: Patients undergo only pharmacological treatment (BMT On, DBS Off)
S4: Patients undergo both types of treatment (BMT On, DBS On)

We compared correlations between types of the sessions and UPDRS results.
In total our data contained 28 registrations with relevant data from neurological
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tests including the results of the UPDRS classifications. Not every patients were
treated with both pharmacological and surgical treatment, so it was impossible
to examine each patient in the four different sessions. The eye moves of the
patient were recorded by the eye tracker. We used head-mounted eye-tracker
JAZZ-Novo with frequency of 1000 Hz. Patient head was positioned on the chin-
rest at a distance of 60-70 cm from the monitor in order to minimize the head
movements.

During each experimental trial patients task was to follow horizontal moves of
the light spot generated by the eye tracker. At the beginning of each one patients
were viewing the fixation point and it was the primary position of the gaze in
each antisaccade trial (0°). When trial started fixation point disappeared and at
the same moment target of the antisaccade appeared randomly on its left or the
right side (10° to the left or right of the fixation point) in arbitrary times between
500-1500 ms. The antisaccade target remained for 100 ms before another trial
started. Patient task was to move eyes in opposite direction to the appearing
targets with best accuracy and smallest delay. The experiment was conducted
in “no-gap” model in contrast to the model introduced by Saslow [21]. Schema
on Fig. 1 presents the model of the anisaccade trial.

/ \
I FIXATION ANTISACCADE
I POINT TARGET
\ /
N IS

Fig. 1. Model of the antisaccade trial.

All experimental trials were conducted in the same lighting conditions. The
data was analyzed by software detecting antisaccades in the eye move signal and
calculating its Delay, Duration and Speed parameters. The algorithm searched
the oculometric data composed from the time stamps and x-coordinates of the
stimuli and patient eyes. The start point of each search window was the moment
of appearance of the antisaccade target. The algorithm expected straight-aimed
move from fixation point to the opposite direction of the appearing target below
the delay threshold of 500 ms. The latency parameter have proved to be a valu-
able source of detailed and quantitative information in a wide range of neu-
rological conditions [19]. Parameter Latency can also give the information of
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the impairments of the decision mechanisms described in the section “Intro-
duction”. Any record which hadn’t passed criteria of move direction (patient
performed prosaccade) in the defined window below the maximum acceptable
latency were removed from the original data. The record was also rejected if there
was non-response or mis-recording (blinks, head movements, etc.) [19]. Calcu-
lated statistics of successful antisaccades gave the mean of 6.53 (SD 2.5). This
fairly weak indicator may be explained by the fact, that for many PD patients
the antisaccade can be a quite difficult task. For particular cases even impossible
to perform.

3 Computational Basis

The eye move parameters, mean latency, mean duration and max speed were
calculated on the basis of registered appearances of fixation point and the target
in correlation with patient’s eye moves. Duration (time) and speed (velocity) are
base parameters describing the eye move. We choose max speed (peak velocity)
because we believe that this parameter is better in showing the oculomotoric
capabilities of the patient than the average speed.

We used the following approach for parameters calculations. The latency
was measured as a period between appearance of the target (and fixation point
disappearance) and start of the eye move in the right direction. Start of the
antisaccade (start point of the duration) has been fixed to the moment when gaze
speed exceeded the threshold of speed determined for particular trial. The speed
threshold was calculated from all subsequent frames of the record by dividing
the maximum speed and the average speed. The Duration of the antisaccade was
determined as the period when gaze direction has began to follow the opposite
direction of the target and when simultaneously the eye speed has started to rise
from the starting point of change of the move direction. The means of Delay and
Duration parameters were calculated arithmetically for a particular patient. The
Max Speed was counted as the maximum from all values collected and calculated
for every eye-tracked frame in the period of the antisaccade duration.

After carrying out the oculometric tests we created the dataset from parame-
ters of the anticassade trials (numeric values) and the neurological data. The neu-
rological data contained parameters describing type of the treatment expressed
in the symbolic attribute “Session” (S1, S2, S3, S4) and the results of UPDRS
classifications (numeric values). In the next phase, the dataset has been used as
the input decision table for Rough Set Exploration System (RSES) we used for
further analysis. RSES is a data-mining software written at Warsaw University
and it has been previously found that RSES deals very good with predicates
based on small data [3]. RSES contains a tool set of methods coming from the
Rough Set Theory (RST) [1]. RST is founded on the assumption that every
object associate some information which are characterized by the same informa-
tion in view of the available information about them [3]. This approach is related
to the granular computing paradigm where every particular granule contains all
attributes are related to “and” logic, and where interactions between granules
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are related to “or” logic [4]. The relation of indiscernibility is the mathematical
basis of this theory stating that a set of similar objects forms a basic granule of
knowledge and any union of those elementary sets formulates a precise set [1]. In
contrast to the precise set, the rough set (RS) cannot be characterized in terms
of information about its elements. Each RS has boundary-line of objects which
cannot be certainly classified. Each RS contains also associated pair of precise
sets (the lower and high approximations). The lower consists of all objects cer-
tainty belong to the set and the upper one containing objects which possible
belong to the set and difference between the upper and the lower precise sets
constitutes the boundary region of the RS [1]. Such approximations are basic
operations used in this data-mining methodology [3].

We used decision table as input data for RSES (as proposed by Pawlak
[1]) constructed from columns where two last are the condition attributes mea-
sured by the neurologist (UPDRS III and IV) and all preceding columns are
the decision attributes. Each row of the table describes the rules, by which each
patient can be described. Therefore, rules can have many specific conditions, as
number of rules equals number of rows. Using this approach, we can describe
different UPDRS values in different patients. This approach should also simulate
the way in which neurologists might interact with patients, perceiving various
patient’s symptoms at various levels of granularity. There are large inconsisten-
cies between PD progression, symptoms, between individual patients and also
in effects of similar treatments and the task of neurologists is to abstract and
consider only those symptoms that are universally significant and serve to deter-
mine a specific treatment [4]. For visualization of the results obtained from RSES
we used the WEKA data-mining software written at University of Waikato with
J48 algorithm generating a pruned or unpruned C4.5 decision tree [2]. C4.5 is
an algorithm building decision trees from a set of data using the concept of the
information entropy and is probably one of most widely used machine learning
tool in the current practice [20].

4 Results

Initial dataset contained 16 attributes and 28 experimental measurements
(observations), representing calculated parameters from the antisaccade records
mapped to the records from neurological database of particular patients. The
example of initial dataset is presented in Table 1. Attributes it the Table 1 were
defined as follow:

Patient ID (ID) - the id of particular patient.

— Session - parameter describing the session type.

— Delay Mean - calculated eye mean delay relative to the movement of the spot.

— Duration Mean - calculated parameter describing duration of particular anti-
saccade.

— Max Speed - calculated maximum eye speed during particular antisaccade.

— UPDRS III - numeric result of patient’s UPDRS III classification.

— UPDRS IV - numeric result of patient’s UPDRS IV classification.
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The example from combined dataset with mostly numeric data is presented
in Tablel. In the first step of analysis we separated the UPDRS III and IV
parameters placing it in two different tables. Then we used RSES for reduc-
tion of attributes and data discretization using the local method with symbolic
attributes, allowing for nominal values analysis. In some cases it give better out-
puts in terms of sensitivity of discretization, as it is generating much more cuts
and it is also slightly faster than the global method [18].

Table 1. Sample of the initial dataset

ID | Session | DelayMean | DurationMean | MaxSpeed | UPDRS-IIT | UPDRS-IV
13 | S4 0.26 1.95 5.05 8 6
14 | S1 0.5 4.4 5.05 43 0
14 | S2 0.35 4.15 5.08 14 0
14 | S3 0.42 4.01 5.24 8
14 | S4 0.33 2.86 5.29 0

The final dataset containing decision important and discretized attributes
representing ranges of values after the classified selection is presented in examples
of data in Tables 2 and 3 accordingly to different UPDRS scale parameters.

Table 2. Sample of the reduced and discretized dataset with attribute UPDRS III

PatientID | Session | DelayMean | DurationMean | MaxSpeed | UPDRS-IIIT
“13” “S4” | (—inf-0.335) | (1.85-inf) (—inf-5.075) | (3-13)
“147 1”7 | (0.445—inf) | (1.85-inf) (—inf-5.075) | (25-59)
“14” “S2” (0.335-0.445) | (1.85-inf) (5.075-5.6) | (13-25)
“14” “S3” (0.335-0.445) | (1.85-inf) (5.075-5.6) | (3-13)
“147 “S4” | (—inf-0.335) | (1.85inf) (5.075-5.6) | (3-13)

In the next phase we wanted to find correlations between UPDRS values and
the rest of the attributes. We compared different RSES classifiers performing
the same cross-validation prediction of attribute UPDRS III and UPDRS IV on
the discreatized datasets. The values of the UPDRS has been estimated with
various accuracy and coverage depending on used algorithm. The classification
has been performed in the method of global 5 Folds cross-validation. We tested
different variants of classifications and 5 Folds gave the best predictive results
for our dataset.
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Table 3. Sample of the reduced and discretized dataset with attribute UPDRS IV

PatientID | Session | DelayMean | DurationMean | MaxSpeed | UPDRS-IV
13 S4 (—inf-0.335) | (1.94-2.725) | (—inf-5.105)  (3-9)
14 S1 (0.375-inf) | (3.885-inf) | (—inf-5.105) (0-1)
14 S2 (0.335-0.375) | (3.885—inf) (—inf-5.105) | (0-1)
14 S3 (0.375-inf) | (3.885-inf) | (5.105-inf) | (3-9)
14 S4 (—inf-0.335) |(2.725-3.885) | (5.105—-inf) | (0-1)

We compared two different classifiers available in the RSES - the Decision
Rules and the Decomposition Tree. The Decision Rules is based on decision
table approach where columns are labeled by attributes, rows by objects of
interest and entries of the table are attribute values [1]. Rows of a decision
table are referred to “if/then” decision rules which give conditions necessary to
make decisions specified by the decision attributes [1]. The Decomposition Tree
splits dataset into fragments represented as a tree’s leafs. Those subsets of data
are used for calculation of decision rules and are supposed to be more uniform
and easier to cope with decision-wise [17]. The RSES expresses the results of
classifications in two main attributes: Total Accuracy (TA) and Total Coverage
(TC). The TA represents the ratio of number of correctly classified cases (sum
of values on diagonal in confusion matrix) to the number of all tested cases
(number of test objects used to obtain this result) [18]. The TC represents ratio
of classified objects from the class to the number of all objects in the class
(percentage of test objects that were recognized by classifier) [18]. The best
results were achieved with the RSES Decomposition Tree. For attribute UPDRS
IIT classification results indicated 0.85 of TA with TC of 0.48. The value of the
UPDRS IV has been estimated with TA of 0.91 and TC of 0.39. Other classifiers
i.e. Decision Rules gave worse TA of 0.7 but with much better TC of 1. Tables 4
and 5 are showing the results for best classification where columns represent
predicted values and rows represent actual values.

In order to better understand and visualize correlations provided by results
we derived the decision trees using WEKA J48 classifier [2]. Analysis of visu-
alization of the obtained trees brought interesting observations. When viewing

Table 4. Result of Decomposion Tree classification with 5 Folds Cross Validation for
attribute UPDRS III.

UPDRS III (3, 13) | (13, 25) | (25, 59) | No. of obj. | Accuracy Coverage
(3, 13) 0.8 0 0 1.6 0.4 0.333
(13, 25) 0.2 0.2 0 1.6 0.1 0.133
(25, 59) 0.2 0 1 1.8 0.7 0.68

Total accuracy: 0.85 Total coverage: 0.48
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Table 5. Result of Decomposion Tree classification with 5 Folds Cross Validation for
attribute UPDRS IV.

UPDRS IV (3,9) (0, 1) | (1, 3) | No. of obj. | Accuracy Coverage
(3,9 1.75 |0 0.25 |2.75 0.938 0.708

(0, 1) 0.25 [0.25 |0 1.75 0.125 0.25

(1, 3) 0 0 0.25 |2.5 0.25 0.083
Total accuracy: 0.91 Total coverage: 0.39

Session

N
-

=81 =52 =s3 =s4
N T
(25-59)(8.0/1.0) (13-25)(6.0/1.0) ( Duration Mean ] (3-13)(6.0/1.0)
=(1.85-inf) =(0.345-1.85)
(3-13)(5.0/2.0) (13-25)(2.0)

Fig. 2. Decision tree visualization for decision attribute UPDRS III and discretized
dataset.

tree describing the UPDRS IIT attribute (Fig.2) we can see that it is character-
ized by strong correlations with method of treatments represented by attribute
Session obscuring the oculometric parameters. However quite strong interplay
can be seen between the type of pharmacological treatment of examined patient
(S3) and mean duration parameter (Duration Mean). To see direct correlations
between UPDRS score and the antisaccade parameters we removed the Session
attribute. With unified methods of treatments, the results showed correlations
between group of the highest results of the UPDRS IIT (25-59) and groups of
the highest duration (1.85-inf) and delay (0.445—inf) and the group of lowest
the speed (—inf-5.075). In Fig.3 we can see that Duration Mean is the main
attribute describing the UPDRS III score group and how values of other oculo-
metric parameters are being distributed. A quite different view emerged from the
analysis of the decision tree containing attribute UPDRS IV (Fig.4). Duration
Mean applied as the main decision attribute. What seems to be interesting the
attribute Session created own branch connected to the group located exactly in
middle of Duration Mean values. Additionally attribute Max Speed correlated
with the group of highest Mean Duration values.
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Duration Mean

=(0.345-1.85)
=(1.85-inf) =(-inf-0.345)
A
Delay Mean (13-25)(6.0/1.0) (3-13)(1.0)
=(-inf-0.335) =(0.335-0.445) =(0.445-inf)
(3-13)(6.0/1.0) ’ Max Speed J (25-59)(5.0/1.0)
=(inf-5.075)  =(5.075-5.6) =(5.6-inf)
(25-59)(3.0) (13-25)(5.0/2.0) (3-13)(2.0/1.0)

Fig. 3. Decision tree visualization for decision attribute UPDRS III and discretized
dataset with attribute Session removed.

Duration Mean

=(inf-0.345) =(1.94-2.725) =(2.725-3.884) =(0.345-1.94) =(3.885-inf)

A N

(0.1)(1.0) [ Session } (1-3)(7.0/3.0) (3.9)(8.0/4.0) [ Max Speed ]
/=51 /=52 =53\‘ =S4\ =(-inf-5.105) =(5.105-inf)
(1-3)(2.0) (1-3)(2.0) (3-9)(2.0) (3-9)(1.0) (0-1)(3.0/1.0) (3-9)(2.0)

Fig. 4. Decision tree visualization for decision attribute UPDRS IV and discretized
dataset.
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5 Discussion and Conclusions

As can be seen in the results the attribute Session (describing methods of patients
treatment) and attribute Duration Mean (antisaccade parameter) were most
sensitive in predicting scoring group of UPDRS III and IV. When comparing
results for both UPDRS III an IV, analysis showed greater correlation between
UPDRS 1V scoring and anitisaccade parameters obtained during oculometric
examination. Attribute UPDRS IV also showed better accuracy during predic-
tions (0.91). The results obtained using our dataset suggests that UPDRS IV
scale is more sensitive in predictions to anitsaccade parameters than the UPDRS
IIT. In our dataset the Delay Mean also presents as the most important deci-
sion attribute. Results of classification for this attribute also shows that we may
increase UPDRS predictions by adding antisaccade parameters to neurological
dataset of the patient.

We found results of this classification as very indicative taking into account
such small group of records and quite high prediction with TA varying from
0.85 to 0.91. It proves sense of further experiments in presented area of correla-
tions, between parameters of patient’s oculometric results and the UPDRS motor
evaluations. It is hoped that further development of methodology described in
this text and similar approaches may help in determining the Parkinson Dis-
ease progression. We believe that in the upcoming future, applied algorithms
can be used in applications installed on personal devices. Patients then could be
free from clinical conditions and could perform oculometric tests under different
environments and circumstances enlarging the amount of information describing
the disease. Such a widespread availability of diagnostic tools, by increasing the
quantity of patients data, should also increase the precision of patient’s diagnosis.

6 Ethic Statement

This study was carried out in accordance with the recommendations of Bioethics
Committee of Warsaw Medical University with written informed consent from
all subjects. All subjects gave written informed consent in accordance with the
Declaration of Helsinki. The protocol was approved by the Bioethics Committee
of Warsaw Medical University.
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