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Abstract. Parkinson’s disease (PD) is a progressive, neurodegenerative disorder
characterized by resting tremor, rigidity, bradykinesia, and postural instability.
The standard measure of the PD progression is Unified Parkinson’s Disease Rat-
ing (UPDRS). Our goal was to predict patients’ UPDRS development based on
the various groups of patients in the different stages of the disease. We used stan-
dard neurological and neuropsychological tests, aligned with eye movements on
a dedicated computer system. For predictions, we have applied various machine
learningmodels with different parameters embedded in our dedicated data science
framework written in Python and based on the Scikit Learn and Pandas libraries.
Models proposed by us reached 75% and 70% of accuracy while predicting sub-
classes of UPDRS for patients in advanced stages of the disease who respond
to treatment, with a global 57% accuracy score for all classes. We have demon-
strated that it is possible to use eye movements as a biomarker for the assessment
of symptom progression in PD.
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1 Introduction

In Parkinson’s disease, we can distinguish multiple therapies, which could be combined.
The gold-standard treatment for PD is a pharmacological treatment with Levo-dopa
(L-dopa) [1, 2]. Nevertheless, L-dopa associates with long-term disturbances. We can
distinguish hypo-hyperkinetic phenomena and psychosis as examples ofmotor andmood
side effects. [3]. The practical and safe procedure, which is lacking these effects and
remains the preferred surgical treatment for advanced Parkinson’s disease, is Deep Brain
Stimulation of the subthalamic nucleus (STN) [4]. However, there is still a necessity of
the support for the neurologists in the field of optimum treatment parameters, because
due to the huge diversity of cases, even the most experienced doctors could not be sure
how the therapy would influent on the patient.
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2 Methods

2.1 The Subject of the Study

The research group was composed of 62 patients who have Parkinson’s disease and
who are under the supervision of the Warsaw Medical University (Warsaw, Poland)
neurologists. We differentiate the patients into three groups. The first one, we named the
Best Medical Treatment (BMT). In this group, we placed patients who were treated only
by the medication. The second one, the Deep Brain Stimulation (DBS), was a group
where patients, who had implanted electrodes in the STN during our study. The last
group, which was named Post-Operative Patients (POP) aggregates individuals who had
had surgery earlier (before the beginning of our research). Every PD patient had three
visits, which were underdone approximately every six months. Every patient from the
DBS group had his/her visit before surgery.

In order to obtain the countable value of the disease, it is crucial to provide a precise
neurological tool which could objectively measure all of the symptoms and determine
a score. For the metric of Parkinson’s disease advancement, there are two common
neurological standards: the Hoehn and Yahr scale and the Unified Parkinson’s Disease
Rating (UPDRS). The UPD rating scale is the most commonly used in the clinical study
of Parkinson’s disease [5], and we also decided to adopt it in this study. Altogether with
UPDRS, every patients’ diseasemetricwas combinedwith the disease duration, the result
of Parkinson’s Disease Questionnaire PDQ39 (which is a disease-specific health-related
quality-of-life outline), the result of Epworth Sleepiness Scale (which is intended to
measure daytime sleepiness), and the parameters of saccadic eye movements, described
further.

The mean age of patients was 51.1 ± 10.2 (standard deviation) years. The mean
duration of the disease was 11.6 ± 4.3 years. The mean of UPDRS score (for all symp-
toms) was 33.8 ± 19.4. The mean of PDQ39 score was 50.5 ± 26.0, and the mean of
Epworth score was 8.7 ± 4.6.

2.2 Eye Movements

The often diagnosed impairment of automatic behavioral responses accompanies the
slowness of initiation of voluntary movements in individuals with PD [6]. An individual
set of behavioral tasksmayprovide insight into the neural control of response suppression
with the usage of motor impairments analysis based on saccadic eye movements [7, 8].
Saccades are a quick, simultaneous movement of both eyes between two or more phases
of fixation in the same direction, and can be measured quickly and precisely.

We choose this marker because of the considerable understanding of the neural
circuitry controlling the planning and execution of saccadic eye movements [9].

During this study, we have used a head-mounted saccadometer JAZZ-pursuit (ober-
consulting.com), which was able to measure the reflexive saccades (RS) in the high
frequency (1000 Hz). We have chosen this device because it is optimized for easy set-up
and provides minimal intrusiveness while can keep stable 1 kHz frequency of measure-
ment. During the experiment, we created a task of the horizontal reflexive saccades
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analysis. Used hardware allowed us to obtain high accuracy and precision in eye track-
ing and the compensation of possible subjects’ head movements relative to the monitor.
Thus subjects did not need to be positioned in an unnatural chinrest, which has a pos-
itive influence on the ergonomy of the experiment. However, we asked patients to use
a headrest in order to minimize the head motion because they could have a significant
influence on the accuracy of the high-frequency measurements. Each patient was seated
in front of the monitor at a distance of 60–70 cm.

The patients’ task was to fix their eyes on the spot placed in the middle of the
screen (0°). Then, the spot changed color into one of the possible variations and shift
horizontally to one of the possible directions: 10° to the left, or 10° to the right, after
arbitrary time ranging between 0.5–1.5 s. During that task, we measured the fast eye
movements of the patient, according to the spot color transition.

When the transition was from white to green, it was a signal for the execution of RS.
We also prepared an additional protocol for antisaccades (AS)measurement. In this task,
the individual was asked to make a saccade in the direction away from the stimulus. A
signal for that was when the spot changed color from white to red. After that, the central
marker was hidden, and one of the two peripheral targets was shown. The selection was
made randomly, with the same probability.

According to the task, each patient looked at the spots and followed them as they
moved (in the RS task) or made opposite direction eye movement (in the AS task). After
that, the target remained still for 0.1 s before the next experiment initialization.

In each test, the subject had to perform twenty saccades and antisaccades in a row-
twice. The recording of the first session (marked as S1) was with the patient who has
temporarily disabled treatment (without medicine/with the disabled neurostimulator). In
the next session (marked as S3), the patient took medication and had a break for one half
to one hour, and then the same experiments were performed (with L-dopa/with enabled
neurostimulator).

In this experiment, we have investigated only RS data using the following population
parameters averaged for both eyes:mean latency (RSLat±SD),mean amplitude (RSAmp
±SD),meanof themaximumvelocity (RSPVel±SD), andmeandurationof the saccades
(RSDur ± SD).

2.3 Dataset

We implemented a dedicated database for measurements storage that was designed and
maintained by Polish-Japanese Academy of Information Technology (Warsaw, Poland).
For operations described further, we flattened the data, placing every experiment in each
row, with the results and metadata in the separated columns. Therefore it could be rep-
resented by a single table represented by comma-separated-values, which is a universal
format for computational engines. The basic structure of the dataset contains 374 obser-
vations, and each has 13 variables, which are: Duration - the duration of the disease;
UPDRS, PDQ39, Epworth - the score for each test; RSLat, RSDur, RSAmp, RSPVel -
the parameters of recorded saccades; Session, Visit - the indexes of the experiment; and
BMT, DBS, POP - boolean variables which describe the kind of patients’ therapy.



540 A. Chudzik et al.

2.4 Computational Learning Theory

Our data contains a set of N training samples of the form (x1, y1), . . . , (xn, yn) such
that xi is the feature vector of the i − th sample with the class denoted by yi . Thus, it is
possible to use a supervised learning algorithm which seeks for a function g : X → Y ,
where the X is the input space, and the Y is the output space. The g function is an element
of some space of possible functions G, known as the hypothesis space.

The task itself could is a multiclass classification. Our goal is to predict a level of the
disease measured as UPDRS value binned into intervals, for different groups of patients.
For the predictions, we have created a dedicated machine learning framework, written in
Python and based on two libraries: Scikit Learn [11] and Pandas, which are high-quality,
well-documented collection of canonical tools for data processing andmachine learning.
We have chosen well-known models that implement different multiclass strategies, such
as K Neighbors Classifier, Support Vector Classifier, Decision Tree Classifier, Random
Forest Classifier, Gradient Boosting Classifier. The framework allowed us to find an
optimal solution by the examination of multiple algorithms with different parameters.

2.5 Hypothesis

Our goal was to predict Parkinson’s disease progression in the advanced stage, based
on the data obtained from the patients in the different treatment and stage of this dis-
ease. This task is non-trivial because there are significant differences between symptom
developments and the effects of different treatments in individual PD patients.

As a training dataset, we used patients from the BMT group (3rd visit), DBS (3rd
visit), and POP (1st visit). The independent test set consisted of the POP group from the
second visit.

3 Results

Our framework was responsible for every step of data processing in order to evaluate
the best model based on given data. Therefore, we implemented procedures which were
responsible for the creation of the Profiling Report, Correlation Matrices, Missing Data
Imputation, Data Discretization, One-Hot Encoding or Data Normalisation of selected
variables and Machine Learning Algorithms Evaluation for various parameters.

3.1 Profiling

Our dataset consists of 374 observations, where each has 13 variables. First, we gen-
erated a Pearson correlation coefficient matrix, where each cell in the table shows the
correlation between two variables. It is a useful tool that proves if a correlation between
the parameters from measurements and the symptoms suggest that some close relations
exist (Fig. 1).
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Fig. 1. Correlation matrix. The similarity between all paired parameters is correlated with the
color of the cell in the matrix (red shade represents high similarity; blue stands contrariwise).
(Color figure online)

3.2 Pre-processing

In the report, we noticed that some of the values are empty.Epworth column had 5 (1.3%)
zeros; RSAmp, RSDur, and RSLat columns had 6 (1.6%) zeros. Because of the Epworth
scale ranges between 0–24, we decided not to apply data imputation on that column.
Whenwe analyzed records related to a single patient, we noticed, that on an early stage of
the disease (duration about 7± 0.3 years) two of them indeed reported no problems with
the daytime sleepiness, yet visits in the following years revealed a linear increase in the
results. For missing parameters of the saccades, we applied the imputation transformer
for completing missing values which replaced missing values using the mean along each
column.

For neurological and neuropsychological tests results (Fig. 2), we applied k-bins
discretization, which provides a way to partition continuous features into discrete values.
Thus those features are a one-hot encoded allowing the model to be more expressive
while maintaining interpretability.

For neurological and neuropsychological tests results, we applied k-bins discretiza-
tion, which provides a way to partition continuous features into discrete values. Thus
those features are a one-hot encoded allowing the model to be more expressive while
maintaining interpretability.

Epworth = (−∞, 6.00), [6.00, 11.00), [11.00,+∞)
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Fig. 2. A histogram, which is a representation of the distribution of data for every measurable
property in the data set. Y-Axis represents a number of samples. The X-Axis presents a parameter
value.

PDQ39
= (−∞, 25.0), [25.0, 38.0), [38.0, 47.5), [47.5, 58.0), [58.0, 74.0), [74.0,+∞)

Other columns (Duration, RSLat, RSDur, RSAmp, RSPVel) were standardize by
removing the mean and scaling to unit variance to keep the subtle representation of
the eye movement signal. The calculation of the standard score of X sample is defined
by:

z = x − u

s

where u is the mean of the training samples, and s is the standard deviation of the training
samples.

Target value, the UPDRS score was optimally divided into four ranges

U PDRS = (−∞, 19.25), [19.25, 30.50), [30.50, 44.00), [44.00,+∞)

This split ensured approximately the same data set size for each class.
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3.3 Machine Learning

Wedecided to evaluate multiple algorithms in order to determine the best approach in the
meaning of accuracy of the predictions. In the previous research [10], Random Forrest
Classifier achieved the high prediction level, being second to Rough Set. This article
covers the evaluation of a few machine learning models which were not used in the
previous research, such as K Neighbors Classifier, Support Vector Classifier, Decision
Tree Classifier, Random Forest Classifier, Gradient Boosting Classifier. The following
sections present each algorithm with evaluated parameters and scores obtained from our
machine learning framework.

K Neighbors Classifier
Classifier implementing the k-nearest neighbors’ vote with uniform weights achieved
maximum accuracy score (0.50) with a parameter defining the number of neighbors on
the level of 12 and 13 (Fig. 3).

Fig. 3. K Neighbors Classifier accuracy scores for different K values.

Support Vector Classifier
We evaluated the C-Support Vector Classification against different kernels (linear, poly-
nomial, radial-basis, and sigmoid). The “linear” kernel achieved the best accuracy score
(0.40) under the penalty parameter C = 0.3 (Fig. 4).
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Fig. 4. Support Vector Classifier accuracy scores for different kernels.

Decision Tree Classifier
A decision tree classifier could provide different results when we change the number of
features to consider when looking for the best split. Varying them between 1 and the size
of all columns of the learning set, the best accuracy (0.50) was for 6, 14, and 15 features
(Fig. 5).

Fig. 5. Decision Tree Classifier accuracy scores for different number of maximum features.

Gradient Boosting Classifier
Gradient Boosting it allows for the optimization of arbitrary differentiable loss functions.
We challenged a different number of boosting stages to perform. Gradient boosting is
relatively robust to over-fitting, so a large number usually results in better performance.
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The scope was between 10 and 1000 estimators, and the highest score (0.43) reveals in
the 200 boosting stages (Fig. 6).

Fig. 6. Gradient Boosting Classifier accuracy scores for different number of estimators.

Random Forest Classifier
In this classifier, we evaluated a parameter which defines the number of trees in the forest.
We used Gini impurity as a criterion of the quality of a split. Random Forest Classi-
fier achieved the highest overall accuracy score (0.57) among other machine learning
algorithms when the number of estimators exceeded 120 (Table 1, Fig. 7).

Table 1. Confusion matrix based on Random Forest Classifier result.

Predicted label

(−Inf, 19.25) [19.25, 30.5) [30.5, 44.) [44., +Inf) Accuracy

True label (−Inf, 19.25) 6 1 1 0 0.75

[19.25, 30.5) 1 7 2 0 0.70

[30.5, 44.) 3 2 3 0 0.38

[44., +Inf) 1 1 1 1 0.25
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Fig. 7. Random Forest Classifier scores for different number of estimators.

4 Discussion

Examination of the variation of the saccades is a non-invasive method of evaluating
the neural networks involved in the control of eye movements. The examples above
demonstrated that it is possible to use eye movements as a biomarker for the assessment
of symptom progression in PD.

We live in the “age of implementation” of the machine learning models. Commercial
companies are acquiring data on a large scale in order to present the content which is
best-fitted to the end-user, which influences the businesses. However, there is still an
emerging necessity of medical data extension because it is a crucial factor in the context
of machine learning. Paradoxically, we have access to much fewer data of the medical
records (even about ourselves) than most of the managers of the commercial websites
who aggregates about our shopping behavior. The modeled data sample, presented in
this article, is relatively abundant in the neuroscience scale. Based on the examinations
conducted by neurologists, we were able to create predictions based on the different
patient population with different treatments for the most advanced stages of the disease.
This results supported with further extended and in-depth research could lead to a new
approach in the development of a follow-up tool for PD symptoms. As an outcome,
this automated mechanism could provide to a doctor an objective opinion about applied
therapy symptoms. Hence we can conclude that when the patient is doing significantly
worse than others, their treatment is not optimal and should be changed. However, there
is still a large field for the model improvements that should lead to more accurate results.
The proposed protocol allowed us to evaluate multiple machine learning models in a
relatively agile process of data aggregation. Consequently, more complex variations of
saccadic tasks can give insight into higher-order eye movement control [12]. Our work is
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an evaluation of well-known models that implement different multiclass strategies, such
as K Neighbors Classifier, Support Vector Classifier, Decision Tree Classifier, Random
Forest Classifier, Gradient Boosting Classifier in the context of saccades research. In
this trial, Random Forest Classifier achieved the highest overall accuracy score, which
could lead to a direction in further discoveries in the field of bioinformatics.

5 Conclusions

We believe that the multidisciplinary cooperation between neurologists and information
engineering is essential to achieve significant results in the open-science approach. We
attempted to predict the longitudinal symptom developments during different treatments
based on the neuropsychological data alignedwith the parameters of the eyemovements.
As a training dataset, we used patients from the BMT group (3rd visit), DBS (3rd visit),
and POP (1st visit). The independent test set consisted of the POP group from the second
visit. For predictions, we used a machine learning framework, written in Python. The
best classifier - Random Forest - reached 75% and 70% of accuracy while predicting
subclasses of UPDRS for patients in advanced stages of the disease who respond to
treatment, with a global 57% accuracy score for all classes. Thanks to collaborative
research, we have presented a comparison of different machine learning models that
could be useful in the context of bioinformatics. Our direction is to create a new research
ecosystem, that would significantly increase (by a factor of 10) the number of attributes
and measurements in order to implement deep learning methods.
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