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ABSTRACT 

The dynamics of coupled nonlinear oscillators are 
extremely rich and important for a large variety of 
physical, technological, and biological systems. 
We present results for three different applications: 
a study of the complex behavior of several coupled 
electronic relaxation oscillators; a network of 
electronic neurons designed to simulate the 
dynamics of a cat retina; and an array of coupled 
nonlinear oscillators that can perform scene 
segmentation and pattern recognition. 

1. INTRODUCTION 

Coupled nonlinear oscillators model a wide variety 
of major technological and physical systems. 
Among the natural systems for which coupled- 
oscillator modelling is important are the Belouzov- 
Zhabotinsky reaction, electric cardiac conduction, 
networks of neurons, and turbulent flows. An 
understanding of phase locking mechanisms is 
very important for technological devices such as 
coupled high-power relativistic magnetrons, 
coupled microwave oscillator drivers for particle 
accelerators, arrays of semiconductor lasers, 
arrays of Josephson junctions, and solid-state 
devices in which sliding charge-density waves 
occur. 

An important and useful property of a 
nonlinear oscillator is that it can synchronize to  
another oscillator given the proper coupling. An 
array of coupled nonlinear oscillators can 
synchronize to a common frequency even though 
the frequencies of the free running oscillators are 
not the same. A good understanding of how 
networks of coupled nonlinear oscillators phase 
lock is the underpinning for using these devices in 
practical applications, 

We discuss three different systems of coupled 

nonlinear oscillators in this paper. In section 2 we 
describe the complex dynamics of a globally 
coupled array of relaxation oscillators that have 
an anti-phase coupling. A ring network of coupled 
“e-neurons” that model the dynamics of a cat 
retina is discussed in section 3. Finally in section 
4 we present results from a network with local 
excitation and global inhibition that can do 
pattern recognition, in this case, scene 
segmentation of a picture. 

2. AN ARRAY OF RELAXATION 
OSCILLATORS 

We first discuss a system of fifteen coupled 
oscillators and describe some of their properties 
when coupled “all-to-all”. The oscillators were 
relaxation oscillators modified so that each 
oscillator could be set to any of 512 distinct initial 
states in its charge-discharge cycle. A simplified 
partial schematic of the experiment is shown in 
figure 1. The oscillators were coupled together in 
an all-to-all coupling configuration with the 
strength of the coupling determined by the resistor 
Rc: there was no coupling when Rc was 0 and 
maximum coupling when it was large. 

The fundamental measurement was the 
computation of locking time that established when 
the oscillators were in phase and allowed direct 
computation of the period and relative oscillator 
phases. Oscillator zero was designated as the 
reference oscillator and all measurements were 
made with respect to it. If the coupling was small, 
then the oscillators were unlocked and the power 
spectrum indicated that the system was 
quasiperiodic. Once the coupling was large 
enough, the oscillators would always phase-lock to 
each other to create a periodic state. Just  below 
the critical coupling, the minimum required to 
achieve phase-locking, there was a region where 
the system could be quasiperiodic or periodic 
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depending on initial conditions, but there was no 
coupling that produced chaotic behavior. 

interesting information about the final states and 
the basin structure. We studied this by measuring 
the locking time distribution as a function of both 
the coupling strength and the number of coupled 
oscillators. The distribution was measured by 
initializing the oscillators with 1000 random 
initial conditions and accumulating the locking 
times. The shape of this distribution varied with 
the number of oscillators. With small numbers of 
oscillators, two to four, the distributions tended to 
be sharply peaked but 

The behavior of the transients carries 
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Fig. 1 Simplified partial schematic of a network of 
relaxation oscillators coupled “all-to-all”. Coupling 
is through the resistor R,. 

gradually developed an exponential background as 
the number of coupled oscillators increased. Once 
the number of oscillators was as large as eight, the 
distribution was purely exponential with no trace 
of the peaks that appeared with smaller numbers 
of oscillators. The slope of the exponential was a 
function of the coupling among the oscillators. 
Just above the critical coupling the slope varied 
inversely with the strength of the coupling 
resistance resulting in very long locking times 

close to the critical coupling and much shorter 
times as the coupling strength increased. 

The number and character of the final states 
is also interesting. For N oscillators, the number 
of states increased from a few near the critical 
coupling to (N-l)! once the coupling was strong 
enough. Since this number increases so rapidly, 
we were only able to veri@ this directly for seven 
or fewer oscillators. However, this is the number 
of permutations of N objects arranged in a circle, 
and what one expects since no oscillator occupies a 
preferred position physically in the all-to-all 
coupling scheme. For three, four, and five 
oscillators it was also clear that each h a 1  state 
had its own period and locking time distribution. 
As the numbers of oscillators increase, these 
distinctions wash out since the different periods 
become very close to each other and the 
distributions overlap. We also found that the 
basins of attraction for the final states were 
fractal, small changes in initial conditions lead to 
very different final periodic states. Even though 
this system exhibits no chaos, it does show a form 
of sensitive dependence on initial conditions [I, 21. 
More details about this experiment can be found 
elsewhere 13,41. 

3. A SIMULATED CAT RETINA 

An electronic circuit consisting of coupled 
nonlinear oscillators was built to simulate the 
spatiotemporal processing in a cat retina. Complex 
behavior recorded in vivo from ganglion cells in 
the cat retina in response to flickering light spots 
was matched by setting the coupling parameters 
in the hardware oscillators. An electronic neuron 
(e-neuron) is composed of four coupled oscillators: 
three representing the light-driven generator 
potential of the ganglion cell, the other 
representing membrane spiking. A 1-D ring of e- 
neurons reflects the connectivity in the retina: 
strong neighborhood excitation, and wider 
inhibition. E-neurons, like retinal ganglion cells, 
exhibit spontaneous spiking, Driving more than 
one e-neuron with a sinusoidally modulated input 
increases regularity in the e-neurons responses, as 
is found in the retina. We encoded e-neuron 
activity into single-bit spike trains and found 
chaotic spontaneous oscillations using close return 
histograms. The model’s behavior gives a new 
understanding of neurophysiological findings. 

As a basic subunit a circuit designed by 
Keener 151 was used. This analog circuit models 
Bonhoffer-van der Pol or FitzHugh-Nagumo 
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equations: 

= 4 (I0-I-G(V)) dt 
- d1 =pv-1-v0 
dt 

where E E [0.01,0.51 is a positive constant which 
determines the nonlinearity, G(V) is a piecewise 
linear function which approximates a cubic 
polynomial, b and V, are constants, V, determines 
resting equilibrium (fixed point or limit cycle),I, is 
an externally modulated input. 

can model the ganglion cell generator potential or 
membrane properties [SI . The membrane 
properties are characterized by two ion channels, 
sodium and potassium. The slow potassium 
current is approximated by a linear function. The 
sodium current iNa is fast and it has N-shape 
nonlinear characteristics as a function of the 
membrane potential. 

coupled circuits. Three of them have small 
nonlinearity (E  = 0.2 ) and different 
eigenfiequencies (1:8:24) and they model a 
generator potential of the ganglion cell. The fourth 
circuit models the ganglion cell membrane 
properties and has a large nonlinearity (E = 0.01 ) 
and 1.6 times higher eigenfiequency than the 
fastest generator potential. 

Figure 2 shows sample traces from a single e- 
neuron. These model the experimental responses 
quite well. The complete network exhibits 
spontaneous oscillations, local excitation of near 
neighbors, and inhibition of distant neighbors 
similar to physiological functionl71. 

By appropriate parameter choice, the circuit 

An e-neuron consists of four resistively 

Fig. 2 Membrane potential(upper trace) and 
generator potential (lower trace) of a single e- 
neuron 

4. SCENE SEGMENTATION BY COUPLED 
NONLINEAR OSCILLATORS 

Humans and other animals analyze and recognize 
patterns with ease, yet this has proven to be a 
very hard problem for a computer. One of these 
problems is scene segmentation, identifying and 
distinguishing objects in a picture. Current 
theories suggest that the ability to solve this 
problem arises from the dynamical properties of 
spike generating neurons, and specifically from 
the temporary synchronization of a network of 
these nonlinear oscillators. In this encoding, each 
pattern corresponds to a synchronized block of 
stimulated oscillators, and different patterns 
correspond to oscillator blocks that are 
desynchronized from each other. 

Developments in nonlinear dynamics make it 
possible to build a device that can automatically 
count and locate objects in a high contrast picture 
in real time [8,91. It can be constructed from a 
network of coupled nonlinear oscillators that are 
analogs of the FitzHugh-Nagumo equations which 
crudely model the dynamical properties of a nerve 
cell. No training of the network is required, all the 
coupling parameters would be set at the time of its 
construction. If the fundamental oscillation 
frequency of the oscillators is chosen correctly, this 
device would also be able to count and locate 
moving objects in a scene. If the inputs to the 
oscillators are made adaptive, the device can be 
made sensitive to changes in a static scene that is 
under surveillance. Such a device can be easily 
built from analog circuit components and 
eventually as an integrated circuit. 

To build such an array, the oscillators are 
locally coupled to their nearest neighbors while a 
single global inhibitor receives input and sends 
output to all the oscillators. The local coupling 
permits oscillators belonging to  the same object to  
synchronize while the global inhibitor forces 
groups of oscillators that belong to different 
objects to desynchronize. Both types of coupling 
are necessary for scene segmentation. If the 
global inhibition were not present, oscillators 
corresponding to an object would synchronize but 
there would be random phase differences among 
the different objects, which would frequently lead 
to accidental synchronization. If there were only a 
global coupling, the geometry would be lost and 
there would be no way of distinguishing among 
the objects. 

There is a complete theory for the locally- 
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excited-globally -inhibited-oscillator-netw ork 
(LEGION) [8,9] that specifies the nonlinear 
oscillator properties, the local and global coupling 
strengths, and predicts the behavior of a network. 
Most importantly, the theory shows that scene 
segmentation is an intrinsic and robust property of 
the model, exists for a large class of initial data, 
and is not sensitive to moderate changes of the 
parameters. 

A LEGION array is automatically parallel 
and naturally designed as an analog circuit 
making it very attractive for realtime problems. 
Although it was first implemented on a digital 
computer, applying the algorithm to an n x n ixel 

coupled nonlinear differential equations. The 
computing power required to do this becomes very 
large, very fast as the resolution of a scene 
increases. A more interesting alternative would 
be to  implement the analog circuit on a VLSI chip. 

The design discussed here is the simplest 
possible. It has fixed connection weights between 
neighbors and is suitable for a picture that has 
only black and white pixels. A modest 
modification of the input coupling can eliminate 
sensitivity to small disconnected regions of 1 or 2 
pixels that could clutter a picture. Scene 
segmentation can be applied to a grey-scale 
picture if the near neighbor couplings are made 
inversely proportional to  pixel value differences. 
Both these possibilities can be implemented in 
hardware in a straightforward way. Neither the 
simple circuit nor either of these variations 
requires the circuit to do any "learning," 

possible uses, anything where machine vision is 
desired. They should be useful for automatic 
targeting, surveillance, or similar military 
purposes. They could serve as an automatic 
analyzer of a visual environment, such as data 
from remote sensing, and a front-end to a pattern 
recognizer. In computer simulation they have 
been used to segment MFi and CT scan images. 
With some straightforward extensions, LEGION 
networks may be used to segregate patterns 
embedded in time, such as acoustic signals, and 
identify the source of each temporal signal. 

We have built a small 2x4 array to perform 
scene segmentation using circuits similar to those 
used to simulate the cat retina. The coupling is 
fixed strength near neighbor coupling with a 
global inhibitor to desynchronize disconnected 
Uobjects". Near neighbors synchronize if they are 
simultaneously excited by an external stimulus. 

array involves simultaneously integrating 2n i 

LEGION networks have a wide variety of 

Disconnected neighbors that are excited, oscillate 
out of phase. It is capable of "identifylng" up to 4 
distinct objects. There appears to be no obstacle to  
building large arrays that will do scene 
segmentation in real time. 
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