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Abstract. Object recognition is a complex neuronal process determined by interactions between many visual areas: from the
retina, thalamus to the ventral visual pathway. These structures transform variable, single pixel signal in photoreceptors to
a stable object representation. Neurons in visual area V4, midway in ventral stream, represent such stable shape detector. A
feed forward hierarchy of increasing in size and complexity receptive fields (RF) leads to grand mother cell concept. Our
question is how these processes might identify an object or its elements in order to recognize it in new, unseen conditions?
We propose a new approach to this problem by extending the classical definition of the RF to a fuzzy detector. RF properties
are also determined by the computational properties of the bottom-up and top-down pathways comparing stimulus with
many predictions. The “driver-type” logic (DTL) of bottom-up computations looks for large number of possible object
parts (hypotheses – rough set (RS) upper approximation), as object’s elements are similar to RF properties. The optimal
combination is chosen, in unsupervised, parallel, multi-hierarchical pathways by the “modulator-type” logic (MTL) of top-
down computations (RS lower approximation). Interactions between DTL (hypotheses) and MTL (predictions) terminates
when RS boundary became small - the object is recognized.
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1. Introduction

How slow and noisy brain’s computations make
our recognition so effective that it outperforms many
times faster artificial intelligent (AI) systems? Can we
at least find out what differences are in computations
between these systems?

In our everyday life we actively perceive only a
small part of our environment. This part depends
on our interest, which determines where we direct
our eyes. This paper describes neurological mech-
anisms that determine how different brain structures
may anticipate what we actually see and mechanisms

∗Corresponding author. Andrzej W. Przybyszewski. E-mail:
Andrzej.Przybyszewski@umassmed.edu.

how to recognize familiar objects in new positions,
light conditions, perspective, and environment. There
are two anatomically different pathways that inter-
act in order to focus our attention on a specific
object. One pathway has specific sub-cortical ascend-
ing input (core cells) whereas another pathway has
diffused sub-cortical inputs (matrix cells) related to
descending pathways from the higher visual areas.
The first pathway classifies objects on the basis of
their pure visual attributes in an ambiguous way as
it is influenced by many sources of noise. In con-
trast to the second pathway is based on predictions
and diverse classifications that may be related to
different motor activities like eye movement or pos-
sibility to grasp an object, anticipation of obtaining
higher value food reward, avoidance of the danger or
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obtaining of the pleasure. Generally, there are many
still not well-described factors that make our visual
recognition powerful and universal. For example: we
have recently demonstrated that we (monkey) per-
ceive differently exactly the same object (stimulus)
in different positions (related the eye positions) [1].
As images in the retina of this object are identical it
means that the descending pathways related to the eye
positions are changing the meaning of this stimulus
(object).

As the precision and meanings of these two path-
ways are different, in order to classify objects, we
have already proposed that the visual system is using
the principles [2] based on rough set theory [3]. Our
model is also using the fuzzy similarities relations
between objects and RF attributes takes into account
differences between different anatomical pathways.
On the basis of the fuzzy similarity relation defini-
tion [4], we propose to classify objects by assembly
of RF related granules that differentiate our method
from that used in most AI applications.

A popular understanding on how neurological
processes in the visual system lead to objects clas-
sification is based on generalization of simple and
complex cell properties from visual area V1 as
described by Hubel and Wiesel [5]. They proposed
that an array of spatially aligned receptive fields (RFs)
of LGN cells might give orientation sensitivity to V1
simple cell (SC), and that several phase (or position)
shifted SCs with similar orientations convergent on
the complex cell (CC). Such convergence might give
spatial invariance in complex cells. On the basis of
simple and complex cells properties, Fukushima [6]
made simulation of a self-organizing network: cog-
nition, and later introduced improved model with a
position invariant property [7]. Networks with similar
principles are still used nowadays in most models of
the visual system. There are based on a first-order
description of primary visual cortex V1 that con-
sist of a collection of locally-normalized, threshold
Gabor wavelet functions spanning a range of ori-
entations and spatial frequencies [8]. More complex
cells’ properties arise in such linear models as sum-
mation of simple/complex cells from V1. There are
many dissertations using this approach in different
visual areas from the thalamus to the inferotemporal
cortex.

The linear combination of simple and complex cell
RF attributes from areas V1, V2 may explain selec-
tivity and position invariance properties of cells in
area V4 [9, 10]. The main assumptions of above
models are that simple units in higher areas (V4)

generate selectivity for complex features or shapes
by summation of units selective to different orienta-
tions and different receptive field sizes. Such linear,
feed forward models can simulate certain sensitivity
of V4 cells to complex object but cannot explain uni-
versality of higher brain areas to recognize complex
objects in unseen conditions. Another problem with
these models is that they do not take into account
nonlinear properties of the complex cells such as,
for example, overlapping of the on and off sub-
fields [11]. Also some basic experimental findings of
cell properties in area V4 like nonlinear interactions
between subfields are not taken into account in above
models [12].

2. Methods

2.1. Theoretical basis

Our data mining analysis is based rough set the-
ory (RST) proposed by Pawlak [3]. Our data in
converted to the decision table where rows were
related to different measurements and columns rep-
resent different attributes. An information system [3]
a pair S = (U, A), where U, A are nonempty finite
sets called the universe of objects U and the set of
attributes A. If a ∈ A and u ∈ U, the value a(u) is a
unique element of V (where V is a value set).

We define as in [3] for RST the indiscernibil-
ity relation of any subset B of A or IND(B) as:
(x, y) ∈ IND(B) or xI(B)y iff a(x) = a(y) for every
a ∈ B where the value of a(x) ∈ V . It is an equiv-
alence crisp relation [u]B that we understand as a
B-elementary granule. The family of [u]B gives the
partition U/B containing u will be denoted by B(u).
The set B ⊂ A of information system S is a reduct
IND(B) = IND(A) and no proper subset of B has
this property [13]. In most cases, we are only inter-
ested in such reducts that are leading to expected
rules (classifications). On the basis of the reduct
we have generated rules using four different ML
methods (RSES 2.2): exhaustive algorithm, genetic
algorithm [14], covering algorithm, or LEM2 algo-
rithm [15].

A lower approximation of set X ⊆ U in relation
to an attribute B is defined as all elements have
B attribute: B−X = {u ∈ U : [u]B ⊆ X}. The upper

approximation of X is defined as some elements have
B attribute: B̄X = {u ∈ U : [u]B ∩ X /= φ}. The dif-
ference of B̄X and B−X is the boundary region of X
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that we denote as BNB(X). If BNB(X) is empty then
set than X is exact with respect to B; otherwise if
BNB(X) is not empty and X is not rough with respect
to B.

A decision table (training sample in ML) for S

is the triplet: S = (U, C, D) where: C, D are con-
dition and decision attributes [3]. Each row of the
information table gives a particular rule that con-
nects condition and decision attributes for a single
measurements of a particular receptive field. As
there are many rows related to different cells and
stimuli, they gave many particular rules. Rough
set approach allows generalizing these rules into
universal hypotheses that may determine optimal
classification for different objects. The decision
attribute D is related to neuron classification defined
as normalized (nominative) response to the stimulus
or stimuli.

Dubois and Prade [16] has been generalized RST
to FRTS (fuzzy rough set theory) by extending
RST indiscernibility with concepts of tolerance after
Zadeh’s membership degrees in fuzzy sets [17].

As the effect, ‘crisp’ dependences were replaced
by a fuzzy tolerance relation Ra(x, y) as a value
between two observations x and y. As Ra(x, y) is
a similarity relation, it must be reflexive, symmetric
and transitive. As summarized in [18] there are sev-
eral tolerance relationships such as the normalized
difference (so-called ‘Equation 1’) or Gaussian or
exponential differences [18]. There are also formu-
las related to normalized differences between pairs
of attributes. The most common are Łukasiewicz
and t.cos t-norms - τ [18]. As decision attributes
are nominative we used crisp relations between
them.

We define B-lower and B-upper approximations
for each observation x in FRST as follow-
ing: B-lower approximation as: (RB ↓ X)(x) =
inf
y∈U

I(RB(x, y), X(y)), where I is an implicator

[18]. The B-lower approximation for the observation
x is then the set of observations, which are the most
similar to observation x and it can predict the deci-
sion attribute with the highest confidence, based on
conditional attributes B.

The B-upper approximation is defined by (RB ↑
X)(x) = sup

y∈U

τ(RB(x, y), X(y)) where τ is the t-

norm. The B-upper approximation is a set of
observations for which the prediction of decision
attribute has the smallest confidence [18].

Also rules in FRST have different construction
than in RST. They are based on the tolerance classes

and appropriate decision concepts. The fuzzy rule is
a triple (B, C, D), where B is a set of conditional
attributes that appear in the rule, C stands for fuzzy
tolerance class of object and D stands for decision
class of object.

2.2. Objects’ attributes

We will represent experimental data ([12]) in the
following table. In the first column are neural mea-
surements. Neurons are identified using numbers
related to a collection of figures in the previous paper
[12]. Stimuli typically used in neuroscience have the
following properties:

1. Orientation in degrees appears in the column
labeled o1.

2. Spatial frequency is denoted as sf1.
3. X-axis stimulus size is denoted by xs1.
4. Y-axis stimulus size is denoted by ys1.
5. X-axis position is denoted by xp1.
6. Y-axis position is denoted by yp1.
7. Stimulus contrast c1.

Similar attributes are for the second stimulus define
as ‘*2’.

Decision attributes are divided into three classes
determined by the strength of the neural responses.
Small cell responses r are classified as class r0 with
value 0, medium to strong responses are classified as
class r1 with value 1, and the strongest cell responses
are classified as class r2 with value 2. Therefore each
cell divides stimuli into its own family of equiva-
lent objects. It is similar approach to popular used
in neuroscience normalization of neuronal responses
from 0 to 100% (here 0 to 2). The full set of stimu-
lus attributes is expressed as B = {o1, sf1, xs1, ys1,

xp1, yp1, c1, o2, sf2, xs2, ys2, xp2, yp2, c2}.
In this work we are looking into single cell

responses only in one area - V4 that will divide all pat-
terns into equivalent (or at least similar to a degree of
the fuzzy tolerance) classes of V4-elementary gran-
ules. Neurons in V4 are sensitive only to the certain
attributes of the stimulus, like for example space
localization, and they are insensitive to other stimulus
attribute like e.g. contrast changes, but when put value
of the contrast equal 0 it means that there is no stimu-
lus). Different V4 cells have different receptive field
properties, which mean that one object (B-elementary
granule) can be classified in many ways by different
cells (V4-elementary granules).
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Fig. 1. Two models of the function approximation: the rough set
[3] on the left, and on the right fuzzy set [27, 28] approaches.

2.3. Receptive field as a computation unit that
determines similarities between objects

Kuffler [19] first defined the receptive field as
antagonistic circular center-surround filter in the
output of the retina. Hubel and Wiesel [5] found elon-
gated orientation-sensitive ON and OFF subfields in
the cat primary visual cortex (V1).

Receptive field properties in the early stages of the
visual pathway have been explained in terms of many
different models generally as linear filters (Gaussian,
Gabor or wavelets) parameterized by temporal and
spatial frequencies, orientation, phase and position
[5, 11]. Even if such local filters are well suited for
the effective and sparse encoding of natural images,
none of the computational vision systems that use
them have managed to achieve robust recognition
performance. It is appropriate, therefore, to consider
different strategies for image processing that assist
recognition.

We have assumed that generally stronger neuronal
responses measured in spikes/sec better classify stim-
ulus attributes related to RF properties than weaker
neuronal responses. In other words, higher response
means that a certain attribute(s) of the object and
RF are more similar than for smaller responses. It is
in agreement with the standard RF properties under-
standing.

However, we will make following modification to
the classical view: we divide neuronal activity into
several ranges: below a certain threshold we assume

that very weak activity is not related to the stimulus (a
classical approach); for activity above the threshold,
as an example, we will discuss medium and strong
responses in different ranges of spike frequencies (see
Fig. 1).

As it is explained in Fig. 1, lower approximation
(strong) neural response is related to certainty (belief)
in the classification of object attributes, whereas
upper approximation (weaker) response is related
to the possibility (plausibility) that an object may
have detected attributes. Therefore our hypothesis is
that by studying the strength of single cell responses
to different stimulus attributes, we can we can find
ranges of “similarities” between stimulus and RF
properties. In this paper we are looking for the basis
of how the brain changes the precision of object clas-
sification from uncertain to confident. Let us take
a simple example like the RF of ON-center retinal
ganglion cell (GC) approximated by the DOG func-
tion (like in Fig. 2). We say that the RF better fits
(more similar) to the larger spot (size attribute of the
object) when GC gives stronger responses (Fig. 1:
lower vs. upper approximation). Another possibility
is a fuzzy set approximation (Fig. 2 right side). In this
model we have three granules: small spot size give
small responses, larger spot size (near size of the RF
center) gives large responses, even larger spot size
(that also partly covers RF surround) gives smaller

Fig. 2. Modified schematic shows RF of LGN, simple and com-
plex V1 cells. ON- OFF-center LGN RF is well described by DOG
(difference of Gaussian) functions. Aligned LGN RF may give ori-
entation properties of V1 simple cells. V1 complex cells may arise
from overlapping V1 simple cells or by higher area modulations.
On-and off-subfields of V1 cells can be approximated by shifted
Gaussian functions (see text).



A
U

TH
O

R
 C

O
P

Y

A.W. Przybyszewski / Fuzzy rough set features of cognitive computations in the visual system 3159

responses. These two models are to some extend
interchangeable but can also be fused to one fuzzy-
rough set approach that we are proposing in this work.
But we have to mention that they are related to the
first order approach, responses measured by mean
spike frequency or by a first harmonic if the stim-
ulus changes its intensity in time. In this case the
second stimulus attribute is the optimal frequency
(spatial vs. temporal frequency tuning). However,
even if this example is limited to the retinal output
that is not influenced by the feedback from higher
areas, retinal classification are not well described
except the first order approximation and probably
more complex [22]. A more careful analysis of the
spike train and its frequencies in response to change
of the light spot diameter and frequency shows a wide
range of different oscillatory responses [22, 23]. We
have revealed (also in the intracellular recordings)
that synchronization of certain oscillations with the
stimulus might code certain stimulus attributes [23,
24]. More generally the retina (and the brain) may
be seen as a system of coupled nonlinear oscillators,
which synchronizations might be related to cognition
[25, 26].

2.4. Decision rules for a single neuron

A classical approach to neuro computation is a
modification of the linear threshold summation. Neu-
rons obtain excitatory and inhibitory inputs (via
synapses) and sum of inputs exceed the threshold
and to generate an action potential (the first order
approach). Each neuron receives thousands inputs
(the most synapses with different weights are on the
dendritic tree) and has a single axon as the output.
As the single action potential is the result of many
inputs, it can be seen as a result of analog compu-
tation. We still have only weak understanding how
these analog computers are working. Therefore we
will mainly approximate neuronal activity as spikes
mean frequency in a certain time (so-called the first
order approach). We will consider only neurons in
the visual system with activity dependent from the
visual input from the retina. Each neuron in this sen-
sory system is characterized by its receptive field (RF)
properties. RF is small part of the visual field in which
neuron is sensitive to the luminance or color changes.
In the following, we study RF properties of neurons
in different parts of the visual brain.

An extension of this approach will be to take
into account membrane properties as assembly of
ion channels with different dynamic. In this case the

membrane can sense different frequencies in assem-
ble of input (synaptic) signals and generate spikes
with complex frequency patterns. It is the basis of
the oscillatory theory of the cognition. In the retina,
ganglion cells show intracellular oscillations that for
certain parameters of the stimulus that can lock (see
above) to the input giving appropriate burst of spikes
[25]. Then the decision become more complex as the
mean spike frequency give information about stim-
ulus attributes that fit (to a certain extend) to RF
properties, their frequency can give additional infor-
mation about other stimulus attributes. Therefore,
oscillations can be seen as a higher order decisions
related to object’s attributes.

2.5. Decision rules for thalamus - LGN

The LGN neurons RFs have the concentric center-
surround shapes that are similar to the retinal ganglion
cells RFs [19]. In our model, we take into account
only on- and off type RFs. The ON-type neurons
increase their activity by an increase of the light lumi-
nance in their RF center and/or decrease of the light
luminance in the RF surround (Fig. 2). The OFF-type
neurons act in the inverse direction.

An example below consists of two equations
describing rules for on- off- center in the LGN neu-
ron. The RF of this neuron has the position: xp0,
yp0, and RF size is xs = 0.5 deg, ys = 0.5 deg and
RF center size is xs = 0.2 deg, ys = 0.2 deg. There is
no positive feedback from higher areas therefore the
maximum response is r1.

DRLGN1 : xp0 ∧ yp0 ∧ xs0.2 ∧ ys0.2 ∧ c1 → r1

(1)

DRLGN2 : xp0 ∧ yp0 ∧ xs0.5 ∧ ys0.5 ∧ c−1 → r0

(2)

In (1) change in the luminance that cover the RF
center gives response r1. When change in the lumi-
nance covers the whole RF it gives response r0 as
the sums of excitation and inhibitions are equal. It
is an example of very simple stimulus like a short
light flash. We can also stimulate separately RF center
and RF surround and by changing contrast and fre-
quency of luminance changes in order to obtain more
complex responses that better characterize a particu-
lar neuron. Another simpler method is to replace RF
center and surround stimulations by the drifting grat-
ing that covers the whole RF. As the RF – center is
small then it is stimulated the high spatial frequency
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of the grating. The low spatial frequencies stimulate
center and surround. By findings differences in these
frequencies we can characterize sizes of RF center
and surround. By changing contrast and color one
can find other properties of the particular RF and for-
mulate them as rules [29]. These rules will represent
different LGN-elementary granules.

2.6. Decision rules for area V1

In the area V1 (so-called primary visual cortex)
neurons by aligned LGN RF get a new, orientation
sensitivity property (Fig. 2 left). It is in contrast to the
lower areas: retina or LGN where RF have circular
on-off shapes (Fig. 2 top, right). There are generally
two cell types related to their RF properties in the
primary visual cortex: simple and complex RF cells
(Fig. 2 bottom, right). Both cell types have incremen-
tal (On - responding to white bars) and decremental
(Off – responding to black bars) subfields. The major
difference is that in simple cells On- and Off- sub-
fields are separated, and in complex cells they are
overlapping (see rules in [29]).

The classical concept related to the difference
between simple and complex cells is that complex
cells RFs are effect of the convergence of several
simple cells [5] (Fig. 2). However, some experiments
suggest that the nonlinearity of the complex cells RFs
[11] might be related to the properties of the feedback
and/or horizontal connections [30].

2.7. Decision rules for area V4

In the higher areas such as the area V4, RFs became
larger (till several degrees) and more complex than
in the lower areas such as V1 or LGN. As V4 RFs
are also nonlinear, it is very difficult to find optimal
stimulus for some of these cells. In our experiments
[12], we found that V4 RFs are consistent of the inter-
actions between many subfields related to the lower
areas RFs [12]. Examples of such RFs properties and
related decision rules are in [12, 29].

2.8. Complex cell properties determine local
computations

As mentioned above, the default strategy for many
recognition systems based on the image encoding
approach is to use local filters for the transformation
of image information in terms of local (Gaussian-like)
gradients. These image compressions and reconstruc-
tion strategies have had such limited success in the

task of the natural object recognition that it is diffi-
cult to compare them to the recognition capabilities of
primates. We suggest that it may be related to differ-
ent principles: primate’s image recognition strategy
is different from direct image encoding by band of
linear filters.

Therefore, we will analyze the receptive field (RF)
properties of thalamic (LGN) and cortical cells in
order to compare them to linear filters used in artificial
systems. At first, we will show how RF properties of
simple and complex cells in V1 may emerge from the
LGN RFs.

The schematic in Fig. 2 demonstrates convergence
of the LGN cells into V1 cells. An array of spa-
tially aligned RFs of LGN cells may give orientation
sensitivity to a V1 simple cell (SC) [4] (Fig. 2 left
side). However, the origin of the area V1 complex
cell (CC) RF is less clear and several hypotheses are
still under debate today: 1) there is synaptic conver-
gence of several (phase shifted) SCs on one CC [4];
2) CC properties are an effect of LGN RFs overlap [1]
(Fig. 2); 3) feedback from the higher areas can change
RF properties of V1 cells from simple to complex
[29].

The most popular model approximates the LGN
RF by the Difference of the Gaussian (DOG) func-
tion, which linearly transforms local properties of
visual images (Fig. 2 right side). As mentioned above,
a popular model of V1 SC and CC RFs are Gabor or
Gaussian functions, which transform image linearly,
whereas the electrophysiology shows that CC RFs
in V1 and higher areas are nonlinear. Intracellular
recordings demonstrate that there are several distinct
nonlinear processes between membrane modulation
and the spike generation mechanism; therefore lin-
earity of SC RF is an exception, which depends
on stimulus parameters [31]. The simple/complex
cell dichotomy is also characterized by overlap
between ON and OFF RF sub-regions. More pre-
cisely, ON/OFF activating regions (ARs) can be
mapped with light increment/decrement (INC/DEC)
bars and described as INC/DEC ARs. Recently, it has
been shown that in awake monkeys, SCs are charac-
terized by minimal overlapping (less than 30%) of
the ARs, but larger group of CCs have strongly over-
lapping (over 50%) ARs [31]. The response of each
elongated AR can be approximate by the Gaussian
function [23]. If overlap is less than 30% then we can
still estimate if an INC or DEC AR was stimulated and
recover the input image. However, for CC with ARs
overlapping more than 50%, it is not even possible
to say what the stimulus polarity in the overlapping
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region was. Even if Shams and von der Malsburg [32]
suggested that CC population responses contain suffi-
cient information to recover the essence of images, we
will concentrate on individual cells as feedback loops
act on them non-uniformly [33]. Our complex cells
are from the second cortical stage (layer 2+3) and not
in input layer 4, which mainly integrate lower area
(thalamic) input [34]. Therefore, mentioned above
properties of CCs eliminate them as encoders, and
they only can be detectors. As shown schematically
in Fig. 2, larger overlap in CC RFs make CCs better
edge detectors than SCs. In addition their nonlineari-
ties help in sharpening edge detections. Moreover, the
higher areas may influence the overlap of INC/DEC
ARs in V1 RFs [40], as well as other RF attributes like
e.g. orientation [32]. Therefore, the region of the edge
detections may become variable within the RF; we
call this effect the tuning of the lower areas properties
to the higher areas predictions. In addition, positive
feedback from higher to lower areas may regulate
edge detection sensitivity [35].

In summary, CCs even from early visual areas
(V1) do not encode local image features but detect
attributes to which they are tuned. In consequence
higher areas can only access encoded information
about images in lower areas with the help of feedback
pathways.

We will divide information transformation in the
brain into bottom-up (BUCs) and top-down com-
putations (TDCs). The BUCs are determined by
anatomical and physiological properties of ascending
pathways, whereas TDCs are related to descending
pathways.

2.9. Local vs. global computations: simplified
connections from thalamus to area V4; core
vs. matrix projections

We will demonstrate an anatomical basis of net-
work computation that generally suggest that there
are local in each area as well as global - between areas
computations with different properties (see below).
This schematic is giving evidence that a popular view
of a serial computations going from lower to upper
anatomical areas has to be modified. There are no pure
feed forward computations as all areas are strongly
interconnected.

We suggest that the retina is responsible for creat-
ing preliminary hypotheses about certain features of
perceived objects [35]. In one part of the Thalamus: in
the Lateral Geniculate Nucleus (LGN), each hypoth-
esis is compared with the prediction from the higher

visual areas [35, 36]. If prediction and hypothesis are
in agreement the decision signal is sent to the motor
system to perform action [37]. This process of pre-
dictions and hypotheses is repeated in different levels
of higher visual areas. In this project, we will limit
our model to three hierarchical levels: LGN, V1, and
V4.

The feedback interactions with horizontal connec-
tions are anatomically complex and still not fully
clarify functionally [37]. Cortico-thalamic cells with
somas in layer V have far more extensive axonal
ramifications in the cortex and thalamus. They have
dendrites in the layer I and their axons give off a
number of horizontal collaterals in layers III and V
and then descend to the thalamus and to other sub-
cortical structures such as the tectum, other parts
of the brain stem, or the spinal cord. Unlike the
axons of a layer VI cells, axons of layer V cells do
not give off collaterals to the reticular nucleus and
they are not restricted to the nucleus from which
their parent cortical area receives inputs (like for a
layer VI neurons). Their axons extend into one or
more adjacent nuclei, although in each nucleus the
terminals can be more focused than those of the
axons of layer VI cells. The focusing of the layer
V projection in comparison with layer VI projec-
tion does not imply a greater degree of topographic
specificity because their intracortical projections are
widespread in comparison to highly columnar layer
VI projections.

2.10. Logic of the anatomical connections

As it was mentioned above, our model consists of
three interconnected visual areas. Their connections
can be divided into feedforward (FF) and feedback
(FB) pathways. We have proposed [35] that FF con-
nections are related to the hypothesis about stimulus
attributes and FB pathways are related to predictions.
Below, we suggest that the different anatomical prop-
erties of the FB and FF pathways may determine their
different logical rules.

We define LGNi, as LGN i-cell attributes for cells
i = 1, . . . , n, V1j as primary visual cortex j-cell
attributes for cells j = 1, . . . , m, and V4k as area
V4 attributes for cells k = 1, . . . , l.

The specific stimulus attributes for a single cell
can be found in the neurophysiological experiment
by recording cell responses to the set of various test
stimuli. As we have mentioned above, cell responses
are divided into several (here 3) ranges, which will
define several granules for each cell. It is different
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from the classical receptive field definition, which
assumes that the cell responds (logical value 1) or
does not respond (logical value 0) to the stimulus
with certain attributes. In the classical electrophysio-
logical approach all receptive field granules are crisp.
In our approach, cell responses below the threshold –
r0, have logical value 0, the maximum cell responses
- r2, have a logical value 1 but we will introduce
cell responses between r0 and r2, in this paper only
one value r1. The physiological interpretation of cell
responses between the threshold and the maximum
response may be related to the influence of the feed-
back, horizontal pathways or matrix projections. We
assume that the tuning of each structure is different
and we will look for decision rules in each level that
give responses r1 and r2. For example, we assume
that r1 means that the local structure is tuned to the
attributes of the stimulus and such granule for j-cell
in area V1 will be define as [u]1V1j .

2.10.1. Bottom-up computations (BUCs)
We will describe the logic of BUCs on the basis of

LGN to V1 pathways, and by simplified direct and
indirect influence of area V1 on area V4. Thalamic
axons target specific cells in layers 4 and 6 of the
primary visual cortex (V1). As Hubel and Wiesel [5]
proposed, LGN cells determine orientation of SCs
with their receptive fields arranged along the pre-
ferred orientation of the V1 cell (Fig. 2). There is
high specificity between RF properties of the LGN
cells and SC if they have monosynaptic connections
[45]. The precision goes beyond simple retinotopy
and includes such RF properties as RF sign, timing,
subregion’s strength, and size [45]. This high speci-
ficity of connections determines that V1 cell response
is a result of assembly activity of several specific
LGN cells “connected” by the logical “AND” as it
was already discussed above. This is related to the
fact that several aligned receptive fields in LGN must
be simultaneously activated (“AND”) in order to acti-
vate V1 cell connected to them [24]. As Sherman and
Guillery [38] have proposed, we will call such inputs
drivers. See formal rules in [29].

We assume that the neuron in area V4 receives
driver inputs directly from cells in area V1 as well
as indirectly through area V2 with highly specific
RF properties (as described above for connections
between LGN and V1 – equation 1). Therefore, the
logical “and” has the same meaning as above: every
input neuron from V1 “connected” to V4 (xn, yn)
cell must be activated in order to activate V4 cell
(more explicit formula in [29]). However, in this case

“connection” can be changed by the descending path-
ways (see below).

2.10.2. Top-down computations (TDCs)
The bases of TDCs are anatomical and physiologi-

cal properties of descending pathways. Their function
is to perform similarity verification that may lead
to recognition. In the primate visual system the first
descending pathway is from area V1 to the LGN.

Experimental results show that V1 feedback
connections are restricted to the LGN region, visual-
topically coextensive with the size of the classical
RF of V1 layer 6 cells [37]. We will call after [38],
feedback inputs as the modulators.

Decision Rules for TDCs from V4 to V1 or V4 to
LGN will have similar syntax even if anatomical and
physiological properties of the feedback pathways are
different. Retrograde anatomical tracing has shown
descending axons from area V4 directly to area V1
[39]. Axons of V4 cells span into area V1 in distinct
clusters or in a linear array. The different semantics in
decision rules are V4 cell specific and are related to
the shapes of individual and variable axon branches
in area V1. An axon’s cluster that has terminals on
V1 cells near “pinwheel centers” where cells show
sub-threshold responses to all orientations will be
responsible for the V4 subfield orientation tuning. If a
linear array of terminals is connected to V1 neurons
with similar orientation preference (narrowly tuned
neurons [40]) - place tuning will take place. Retro-
grade tracing from area V4 showed axons projecting
to different layers of the LGN with terminations in
distinct clusters or in linear branches [41]. These pro-
jections will also tune orientation and place of V4 cell
subfields but with different precision than V4 to V1
pathways [41]. To summarize, object recognition has
two stages: at first BUCs classify all possible objects’
similarities in different visual areas; in the next stage
TDCs verify BUCs classification. In the following
paragraph we will apply our computational model to
experimental data from the area V4.

3. Results and analysis

We have analyzed the experimental data from sev-
eral neurons recorded in the monkey’s V4 [12]. Below
we show a modified figure from the above work
(Fig. 3), along with the associated decision table
(Table 1). On the basis of the decision table we have
made a schematic of the optimal stimulus for this cell
(Fig. 4 right side). Figure 4 (left side) shows the cell’s
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Fig. 3. Curves represent approximated responses of a cell from
area V4 to vertical (C), and horizontal (D) bars. Bars change their
position along x-axis (Xpos) or along y-axis (Ypos). Responses of
the cell are measured in spikes/sec. Mean cell responses ± SE are
marked in the figures. Cell responses are divided into three ranges
(concepts) by two horizontal lines. On the right is a schematic
representation of cell response on the basis of Table 1. Vertical and
horizontal bars in certain x- and y-positions gave strong (r1: class
1 – upper schematic) ot very strong (r2: class 2 – lower schematic)
responses.

Table 1
Decision table for cell shown in Fig. 3 upper part

Cell o1 sf1 xs1 ys1 xp1 yp1 c1 r

12 90 0.5 0.4 4 –2 0 0.9 0
12 90 0.5 0.4 4 –1.5 0 0.9 0
12 90 0.5 0.4 4 –1 0 0.9 1
12 90 0.5 0.4 4 –0.5 0 0.9 2
12 90 0.5 0.4 4 0 0 0.9 1
12 90 0.5 0.4 4 0.5 0 0.9 0
12 90 0.5 0.4 4 1 0 0.9 2
12 90 0.5 0.4 4 1.5 0 0.9 2
12 90 0.5 0.4 4 2 0 0.9 0

responses to the stimulus, which was a long narrow
bar with vertical (Fig. 4C) or horizontal (Fig. 4D)
orientation.

The decision table (Table 1) describes properties
of stimuli and their position as a function of response
strength. This table is converted into a schematic
(right of Fig. 1), which shows areas of cell responses
related to category 1 (upper part) and to category 2
(lower part). Strong cell responses are not symmetric
along the middle of the receptive field, but divide the
receptive field into several smaller subfields.

These results are the basis of the idea that the recep-
tive field of V4 neurons can be divided into several
independent parts [12]. Our results can be presented
as follows:

o90 ∧ (xpr0.5 ∨ xpr0.6) ∧ xs0.4 ∧ ys4 → r2 (3)

o0 ∧ (ypr1.2 ∨ ypr0.7) ∧ xs4 ∧ ys0.4 → r2 (4)

All attributes as described above. Similar table we
write for the lower part of the Fig. 3. For each row
we can write a rule that describes results from Fig. 3,

For example for row 1 we write the rule:

“cell = 12”&”o1 = 90”& . . . &”c1= 0.9”→ r = 0
(5)

We read it as, if cell number is 12 and stimulus
orientation is 90 and . . . and stimulus contrast is 0.9
then cell response is 0.

We would like to find how generals are these rules
and if we can simulate responses of another cell to
different stimulus on the basis of such rules?

Two-bar experiment demonstrates responses to
small bars along x-axis in the receptive field (Fig. 4).

In the next step we can use FRST hybrid rules
with t.norm = “Lukasiewicz”, tolerance = “Equation
1”, implicator = “Lukasiewicz” to predict results from
Fig. 3 by Two-bars experiment we obtained a cross-
validation Table 3.

Total accuracy is 0.66 and coverage for FRST is
always 1. The best accuracy is for class 0, for class
2 there were no such predictions. We have also ana-
lyzed ‘ShiftPatch’ experiments were a small patch
of grating was place in different parts of the V4
receptive field [12]. These patches can have differ-
ent orientations or spatial frequencies. Predictions of
the experimental results from ‘ShiftPatch’ using RST
rules from Two-bar experiments gave the total accu-
racy 0.494 exactly the same as prediction with FRST.
But predictions with FRST rules of ‘ShiftPatch’
experiments where only orientation was changing,
from the ‘Two-bar’ experiment, gave the total accu-
racy of 0.556. FRST rules from other experiments
‘MapRF’ [12] gave predictions of ‘ShiftPatch’ exper-
iments with only spatial frequency changes with the
total accuracy of 0.583.

We can divide all above measurement into 9 ran-
dom groups and find rules from 8 groups in order
to predict responses in the 9th testing group and
changing learning and testing groups average results
in 9-fold cross validation for ‘Two-bar’ experiment
we have obtained total accuracy 0.907 but with total
coverage 0.444 using the decision tree classification.
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Fig. 4. Modified plots from [12]. Curves represent responses of two cells from area V4 to small single (E) and double (F, G) vertical bars.
Bars change their position along x-axis (Xpos). Responses are measured in spikes/sec. Mean cell responses SE are marked in E, F, and G.
Cell responses are divided into three ranges by thin horizontal lines. Below each plot are schematics showing bar positions giving r1 (gray)
and r2 (black) responses; below (E) for a single bar, below (F and G) for double bars (one bar was always in position 0). (H) This schematic
extends responses for horizontally placed bars (E) to the whole RF with assumption that each axis gives the same responses as x-axes: white
color shows excitatory related to r2 responses, gray color is related to r1 responses and black color inhibitory interactions between bars.

Table 2
Part of the decision table for cell shown in Fig. 4E one bar

Cell o1 sf1 xs1 ys1 xp1 yp1 c1 r

61 0 0.5 0.25 4 –2.25 0 1 0
61 0 0.5 0.25 4 –2.0 0 1 0
61 0 0.5 0.25 4 –1.75 0 1 0
61 0 0.5 0.25 4 –1.5 0 1 0
61 0 0.5 0.25 4 –1.0 0 1 1
61 0 0.5 0.25 4 –0.75 0 1 1
61 0 0.5 0.25 4 –0.5 0 1 1
61 0 0.5 0.25 4 –0.25 0 1 1
61 0 0.5 0.25 4 0.0 0 1 1

All together there is 39 rows in Table 2 and using
rough set theory (RST) we can find 24 rules, e.g.

(xp1=“(1.375, Inf )”) & (c2 = “(−Inf, 0.5)”)

⇒ (r = 0[5]) (6)

(xp1 = “(−0.775, 0.375)”) ⇒ (r = 1[4]) (7)

(xp1 = “(−1.25, 1.0)”) ⇒ (r = 0[3]) (8)

Table 3
Cross validation table predicts results in Fig. 3

from Fig.4

Predicted

0 1 2

Actual 0 0.44 0 0

1 0 0.22 0

2 0.11 0.22 0

(xp1=“(−0.225, 0.05)”) & (c2 = “(0.5,−Inf )”)

⇒ (r = 2[2]) (9)

We can also find Two-bar experiment rules using
fuzzy RST (FRST):

(xp1 =′ −1.1′) ⇒ (r = 1) (10)

(xp1 =′ 0′) ⇒ (r = 0) (11)

(sf2 =′ 0′) & (xp1 =′ −2′) ⇒ (r = 0) (12)

(sf2 =′ 0.5′) & (xp1 =′ 1.5′) ⇒ (r = 1) (13)
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4. Discussion

In this paper we have considered possible mech-
anisms on ‘how visual system can figure out’
properties of the unseen object. We have proposed
to formalize the receptive field (RF) properties with
help of rough and fuzzy set theories. By using this
concept and by normalization to several levels neu-
ronal responses one can check decisions performed
by each neuron in response to different stimuli. These
decisions tell us how similar RF and object (stimulus)
properties are.

Neurons in area V4 integrate an object’s attributes
from the properties of its parts in two ways: (1)
within the area via horizontal or intra-laminar local
excitatory-inhibitory interactions, (2) between areas
via feedback connections tuned to lower visual
areas. Our research put more emphasis on feedback
connections because they are probably faster than
horizontal interactions [39]. Different neurons have
different Subfield Interactions Rules as described in
the Results section and perceive objects by way of
multiple ‘fuzzy windows’. If an object’s attributes
fit the fuzzy window, a neuron sends positive feed-
back [33] to lower areas, which as described above,
use the ‘modulator-type’ logic (MTL) to sharpen
the attribute-extracting window and therefore change
response of the neuron from class 1 to class 2. The
above analysis of our experimental data leads us to
suggest that the central nervous system chiefly uses
at least two different ‘logical rules’: ‘driver-types’
logical rules (DTL) and ‘modulator –type’ (MTL)
rules.

The first, DTL processes data using a large num-
ber of possible algorithms (over-representation). The
second, MTL supervises decisions and chooses the
right algorithm. As we have described, there are
experimental [42, 43] and theoretical [44] findings
suggesting that properties of RF in lower areas can
be tuned by descending pathways. These findings are
basis for the universality of our visual system that by
learning and trials can recognize unseen objects by
changing hypotheses about their actual properties. It
is based on the similarities.

We have demonstrated of concept on the experi-
mental data with very limited number of cells and
variety of stimuli. Advantage of this approach is that it
is independent on any subjective research hypothesis.

Already in 1997 Biederman [46] suggested that
we recognize objects by components and he has pro-
posed simple geometrical elementary components as
a base for human image understanding. In one of

my previous paper, I have demonstrated how Bie-
derman’s figures could fit to V4 receptive fields (RF)
[2]. Interactions between stimuli being part of the
RF were used in many studies in V4 and higher
areas like IT (infotemporal cortex) [47]. For example,
texture segregation is related texture-defined figures
with homogeneous textures. It is related to an early
enhancement of the figure representation as small V4
RF subfield (as V1 RF size), and a later suppression
of the background in full V4 RF [48]. Another recent
finding related to subfields of V4 RF is the visual
crowding. It is based on the tuning selectivity for
stimuli within the receptive field (RF) of the area V4.
As V4 RF are much larger than letter-like stimuli, the
fusion of separate objects into a single identity have
to occur within the V4 RF [49].

In the recent paper [50], authors demonstrated the
first time of blur encoding in the V4 area of mon-
keys. They have measured tuning in V4 neurons for
both object shape and boundary blur. Moreover, they
observed that blur tuning is specific and not confused
with stimulus size, intensity, or curvature [50]. These
new data can be explained by changing tolerance in
our fuzzy set rules.

5. Conclusion

By applying the FRST to neuro-physiological data
we have demonstrated a new formalized approach:
how the visual brain may perform object categoriza-
tion in the psychophysical space. These processes
are related to anatomical and physiological proper-
ties of the visual system: ascending and descending
pathways are related to hypotheses and predictions
and mirrored by different logical systems (DLT vs.
MLT: driver-type vs. modulatory-type logic). These
different logical rules look for similarities between
properties of the object or its parts in comparison
to RF properties of neurons in LGN, V1, V2, V4
and higher areas in the ventral stream. In agreement
with previous experiences the right hypothesis that is
the most similar to our predictions about the object
is chosen. It is the basis of the cognition related
to the first order processes (spike rates). Using the
same fuzzy logical systems (DLT vs. MLT) one can
describe higher order processes related to oscilla-
tory processes. By extending of our retina model as
the coupled nonlinear oscillatory system to higher
visual areas we propose that in this case also DLT
vs. MLT interactions will be the basis of cognition.
The bottom-up system consists of a large number of
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possible orbits and only some of them are chosen
by top-down parametric control of the lower level
oscillators.
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