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Abstract. Both Rough Set Theory (RST) and Fuzzy Rough Set Theory (FRST)
are related to intelligent granular computing (GrC) but primary with help of
static granules. Our granules are sets of attributes measured from Parkinson’s
disease (PD) patient in a certain moment of his/her disease. In order to look into
PD development in time during our longitudinal study, we have introduced the
complex granule (c-granule) approach with properties of granules that are
evolving with disease progression.
We have used a RST/FRST approach in order to find similarities between

attributes of different patients in different disease stages to another group of
more advanced PD patients. We have compared group (G1) of 23 PD with
attributes measured three times (visits V1 to V3) every half of the year (G1V1,
G1V2, G1V3) to other group of 24 more advanced PD (G2V1). By means of
RST/FRST we have found rules describing symptoms of G2V1 and applied
them to G1V1, G1V2, and G1V3. With RST (FRST) we’ve got the following
accuracies: G1V1 – 59 (38)%; G1V2 – 68(54)%; G1V3 – 86(61)% but global
coverage for FRST was better. This means that c-granule attributes became
more similar to the model.

Keywords: Granular computing � Similarity � Aggregation �
Disease progression � Disease model

1 Introduction

Our goal was to simulate Parkinson’s disease (PD) development in time with help of
granular computing (GrC) methods [1, 2]. As PD related neurodegeneration (ND) starts
about 20 years before first symptoms and during this period of time ND process is
effectively compensated by brain plasticity, each patient’s PD progressions are
different.

In this work, we have used intelligent granular computing based on the principle of
complex object classifications from the visual brain [3, 4]. As states in the schematic
(Fig. 1) properties of the unknown object p are represented as a and compared with the
model aM (in the brain – possible objects [3], here symptoms of more advanced PDs). It
results rules b that determine new object’s properties or PD time development.
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2 Methods

Our data mining analysis is based on granular computing implemented in RST (rough
set theory proposed by Pawlak [1] and FRTS (fuzzy rough set theory) by extending
RST indiscernibility with concepts of the tolerance Zadeh [2].

Our data is converted to the decision table where rows were related to different
measurements and columns represent different attributes. An information system [1] a
pair S ¼ U;Að Þ, where U, A are nonempty finite sets called the universe of objects
U and the set of attributes A. If a 2 A and u 2 U, the value a(u) is a unique element of
V (where V is a value set).

We define as in [1] for RST the indiscernibility relation of any subset B of A or IND
(B) as: x; yð Þ 2 IND(B) or xI(B)y iff a(x) = a(y) for every a 2 B where the value of
aðxÞ 2 V . It is an equivalence crisp relation ½u]B that we understand as a B-elementary
granule. The family of ½u�B gives the partition U/B containing u will be denoted by B
(u). The set B � A of information system S is a reduct IND(B) = IND(A) and no proper
subset of B has this property [1]. In most cases, we are only interested in such reducts
that are leading to expected rules (classifications). On the basis of the reduct we have
generated rules using four different ML methods (RSES 2.2): exhaustive algorithm,
genetic algorithm, covering algorithm, or LEM2 algorithm.

A lower approximation of set X�U in relation to an attribute B is defined as all
elements have B attribute: BX ¼ u 2 U : ½u�B�X

� �
. The upper approximation of X is

defined as some elements have B attribute: BX ¼ u 2 U : ½u�B \X 6¼ /
� �

. The dif-
ference of BX andBX is the boundary region of X that we denote as BNBðX). If
BNBðXÞ is empty then set than X is exact with respect to B; otherwise if BNBðX) is not
empty and X is not rough with respect to B.

Fig. 1. It is a principal schematic of the intelligent granular computing base on the brain
intelligence. We observe a limited part of c-granule g that is generally subpart ag of environment
env in a time interval [t − D, t]. Interaction between env and ag in time t during D Int g,t,D (env,
ag) represents a and results that rule (a \ aM, c)−>b is learned by ag, where c represents
properties of the structure g, and a property of the interaction process, and b describes unknown,
expected properties other part of g that might be reason for future changes into the disease; aM it
is the model of the world that interacts with a in order to extracts its significant features (modified
after [5]).
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A decision table (training sample in ML) for S is the triplet: S ¼ ðU;C;DÞ where:
C, D are condition and decision attributes [1]. Each row of the decision table gives a
particular rule that connects condition and decision attributes for a single measure-
ments, RST generalizes these particular rules into universal hypotheses (object or
disease classification.

Dubois and Prade [6] have generalized RST to FRTS (fuzzy rough set theory) by
extending RST indiscernibility with concepts of tolerance after Zadeh’s membership
degrees in fuzzy sets [2].

As the consequence, ‘crisp’ dependences were replaced by a fuzzy tolerance or
similarity relations Ra(x, y) as a value between two observations x and y. As Ra(x, y) is
a similarity relation, it must be reflexive, symmetric and transitive. As summarized in
[7] there are several tolerance relationships such as the normalized difference (so-called
‘Eq. 1’) or Gaussian or exponential differences [7]. There are also formulas related to
normalized differences between pairs of attributes. The most common are Łukasiewicz
(t.norm) and t.cos − s [7]. As decision attributes are nominative we used crisp
relations between them.

We define B-lower and B-upper approximations for each observation x in FRST as
following: B-lower approximation as:ðRBÞðxÞ ¼ inf

y2U
I RBðx; yÞ;XðyÞð Þ where I is an

implicator [7]. The B-lower approximation for the observation x is then the set of
observations, which are the most similar to observation x and it can predict the decision
attribute with the highest confidence, based on conditional attributes B.

The B-upper approximation is defined by ðRBÞðxÞ ¼ sup
y2U

s RBðx; yÞ;XðyÞð Þ, where s
is the t-norm. The B-upper approximation is a set of observations for which the
prediction of decision attribute has the smallest confidence [7].

Notice that rules in FRST have dissimilar formation than in RST. They are based on
the tolerance classes and appropriate decision concepts. The fuzzy rule is a triple (B, C,
D), where B is a set of conditional attributes that appear in the rule, C stands for fuzzy
tolerance class of object and D stands for decision class of object.

We have used RST algorithms implemented as the RSES 2.2 (logic.mimuw.edu.pl/
*rses/get.html) Exploration Program Rough System and FRST implemented as Rough
Set package in R [7].

2.1 Measured Attributes

We have tested two groups of PD patients: the first group (G1) of 23 patients was
measured three times every half of the year (visits were numbered as V1, V2, V3), and
the second group (G2) had more advanced 24 patients and were a reference model of
disease progression in the first group. Both groups of patients were only on medication.
The major medication in this group was L-Dopa that increases concentration of the
transmitter dopamine in the brain as it that is lacking in Parkinson’s patients. In the
most cases PD starts with neurodegeneration in substantia nigra that is responsible for
the release of the dopamine.

All patients were measured in two sessions: MedOFF (session S#=1 without -
medication) and MedON (session S#=2 patients on medications). In addition all
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patients have the following procedures: neuropsychological tests: PDQ39 (quality of
life), Epworth (sleepiness test); neurological tests: eye movements and standard PD
test: UPDRS (Unified Parkinson’s Disease Rating Scale). All tests were performed in
Brodno Hospital, department of Neurology, Faculty of Health Science, Medical
University Warsaw, Poland. In the present work, we have tested and measured fast eye
movements: reflexive saccades (RS) as described in our previous publications [8, 9]. In
summary, every subject was sitting in a stable position without head movements and
watching a computer screen before him/her. At the beginning he/she has to fixate in the
center of the screen, and to keep on moving light spot. This spot was jumping ran-
domly, ten degrees to the right or ten degrees to the left. Patient has to follow
movements of the light spot and following parameters were measured: latency (RSLat)
– time difference between beginning of spot and eyes movements, saccade duration
(RSDur); saccade amplitude (RSAmp) and saccade velocity (RSVel).

3 Results

For the first group of PD patients we have performed three tests, every half-year,
whereas the second group of more advanced PD we have measured only one time. The
mean age of the first group (G1) was 57.8+/−13 (SD) years with disease duration 7.1+/
−3.5 years; UPDRS MedOff/On was 48.3+/−17.9 and 23.6+/−10.3 for the first visit
(V1); 57.3+/−16.8 and 27.8+/−10.8 for the second visit (V2), 62.2+/−18.2 and 25+/
−11.6 for the third visit (V3). The second group (G2) of patients was more advanced
with mean age 53.7+/−9.3 years, and disease duration 10.25+/−3.9 years; UPDRS
MedOff/On was 62.1+/−16.1 and 29.9+/−13.3 measured one time only. Data were
placed in four information tables: G1V1, G1V2, G1V3, and G2V1.

Table 1 has 46 rows: 23 patients measured in two sessions each. Condition attri-
butes patient number P#, S# session number, tdur – disease duration, PDQ39, Epworth
(as above), RS parameters (above). The decision attribute is UPDRS that is propor-
tional to the disease progression, it increases from G1V1 to G1V3 and it will be
referred to G2V1.

Table 1. Part of the decision table for three G1V1 patients

P# Ses tdur PDQ39 Epworth RSLat RSDur RSAmp RSVel UPDRS

10 1 5.3 90 17 205 51 9.8 343 58
10 2 5.3 90 17 182 56 10 333 35
11 1 15 122 8 245 55 12 503 57
11 2 15 122 8 266 55 12 431 40
12 1 5.5 20 3 178 54 10 421 25
12 2 5.5 20 3 161 58 13 505 15
13 1 4.8 68 9 299 59 13 472 46
13 2 4.8 68 9 234 57 11 367 26
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3.1 Rough Set Approach

In the next step, Table 1 is discretized by RST and part of the table for G1V1 patients
in Table 2 below. Notice that some less significant attributes were by algorithm of
RSES 2.2 discarded: RSDur, RSAmp, and RSVel – duration, amplitude and velocity of
reflexive saccades.

By means of the discretization RSES software RSES 2.2 (see Methods) UPDRS
was divided into 4 ranges: “(-Inf, 33.5)”, “(33.5, 43.0)”, “(43.0, 63.0)”, and “(63.0,
Inf)”. All other attributes, except symbolic attributes P# (number given to each patient)
and S# (session number) were also discretized (Table 2).

Cross validation (6-fold) based on the decomposition tree of the first visit G1V1
data gave the global accuracy 0.896 and global coverage 0.35. Prediction, based on
rules from G1V1, of UPDRS in G1V2 and G1V3 gave global accuracy 0.7 with
coverage 1, and these results do not indicate time related disease progression.

For G2V1 group rules from G1V1 gave global accuracy 0.64 and coverage 0.5.
However, it was more interesting to estimate G1V1 to G1V3 from other more advanced
model group of patients G2V1.

This way we can follows our c-granular approach (Fig. 1) where the model are
granules of attributes of G2V1 that might predict PD time: G1V1, G1V3, G1V3
development. With help of RSES we have found rules describing relationships between
condition and decision attributes in G2V1 and we are using these rules to predict
disease symptoms in G1 group for each visit V1, V2, and V3. If the disease progression
has direction going to the model (G2V1) group then are predictions should increase
with the time of the disease. We demonstrate our predictions in three following
Tables 3, 4 and 5.

Table 2. Discretized-table Table 1 for three G1V1 patients

P# Ses tdur PDQ39 Epworth RSLat  RSDur   RSAmp  RSVel   UPDRS

  10 1  "(-Inf,5.65)" "(50.5,Inf)" "(14,Inf)" "(-Inf,264)" * * *  "(43,63)" 
10 2 "(-Inf,5.65)" "(50.5,Inf)" "(14,Inf)" "(-Inf,264)"  * * * "(33.5,43)" 
11 1 "(5.65,Inf)" "(50.5,Inf)"  "(-Inf,14)" "(-Inf,264)"  * * *   "(43,63)" 
11 2  "(5.65,Inf)" "(50.5,Inf)" "(-Inf,14.)" "(264,Inf)" * * * "(33.5,43)" 
12 1 "(-Inf,5.65)" "(-Inf,50.5)" "(-Inf,14)" "(-Inf,264)"* * *  "(-Inf,33.5)" 

 12 2 "(-Inf,5.65)" "(-Inf,50.5)" "(-Inf,14)" "(-Inf,264)" * * *  "(-Inf,33.5)"  
13 1 "(-Inf,5.65)" "(50.5,Inf)" "(-Inf,14.0)" "(264,Inf)" * * *   "(43,63)" 

  13 2 "(-Inf,5.65)" "(50.5,Inf)" "(-Inf,14.)"  "(-Inf,264)" * * *  "(-Inf,33.5)" 
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In Table 3 are prediction of the UPDRS for the first visit group of patients (G1V1).
Notice that in this and two other tables (Tables 4 and 5) we could not predict UPDRS
between 33.5 and 43. The accuracy in Table 3 was below 60%, but it increases for each
following visit: G1V2 has global accuracy 68% and G1V3 – 86%. Therefore patients’
symptoms become with time more similar to G2V1 group.

Table 3. Confusion matrix for UPDRS of G1V1 patients by rules obtained from G2V1 patients
with RST

Actual Predicted
“(63.0, Inf)” “(33.5, 43.0)” “(43.0, 63.0)” “(-Inf, 33.5)” ACC

“(63.0, Inf)” 2.0 0.0 0.0 0.0 1.0
“(33.5, 43.0)” 1.0 0.0 1.0 1.0 0.0
“(43.0, 63.0)” 6.0 0.0 1.0 0.0 0.14
“(-Inf, 33.5)” 3.0 0.0 2.0 17.0 0.77
TPR 0.17 0.0 0.25 0.94

TPR: True positive rates for decision classes; ACC: Accuracy for decision classes:
the global accuracy was 0.59 and global coverage was 0.74

Table 4. Confusion matrix for UPDRS of G1V2 patients by rules obtained from G2V1 patients
with RST

Actual Predicted
“(63.0, Inf)” “(33.5, 43.0)” “(43.0, 63.0)” “(-Inf, 33.5)” ACC

“(63.0, Inf)” 3.0 0.0 1.0 0.0 0.75
“(33.5, 43.0)” 0.0 0.0 2.0 1.0 0.0
“(43.0, 63.0)” 4.0 0.0 0.0 0.0 0.0
“(-Inf, 33.5)” 0.0 0.0 1.0 16.0 0.94
TPR 0.43 0.0 0.0 0.94

TPR: True positive rates for decision classes; ACC: Accuracy for decision classes:
the global accuracy was 0.68 and global coverage was 0.61.

Table 5. Confusion matrix for UPDRS of G1V3 patients by rules obtained from G2V1 patients
with RST

Actual “(63.0, Inf)” “(33.5, 43.0)” “(43.0, 63.0)” “(-Inf, 33.5)” ACC

“(63.0, Inf)” 3.0 0.0 0.0 0.0 1.0
“(33.5, 43.0)” 0.0 0.0 1.0 2.0 0.0
“(43.0, 63.0)” 0.0 0.0 0.0 0.0 0.0
“(-Inf, 33.5)” 0.0 0.0 2.0 16.0 1.0
TPR 1.0 0.0 0.0 1.0

TPR: True positive rates for decision classes; ACC: Accuracy for decision classes:
the global accuracy was 0.86 and global coverage was 0.48.
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An important part in these estimations is to find rules that are enough general to be
patient independent (there are different patients in G1 and G2 groups) and not too
general in order to find differences between different visits.

There were all together 71 rules, e.g.

(Ses=2)&(PDQ39="(-Inf,50.5)")=>(UPDRS="(-Inf,33.5)" [10]) ð1Þ

(Ses=2)&(Epworth="(-Inf,14.0)")&(RSLat="(264.0,Inf)") 
=>(UPDRS="(63.0,Inf)"[4]) ð2Þ

(dur="(5.65,Inf)")&(Ses=2)&(RSLat="(-Inf,264.0)") 
=>(UPDRS="(-Inf,33.5)"[14]) ð3Þ

(Ses=1)&(PDQ39="(-Inf, 50.5)")&(RSLat="(264.0,Inf)") 
=>(UPDRS="(63.0,Inf)"[1]) ð4Þ

Equations (1–3) were for Ses = 2 (patient on medication) and they were fullfield by 10
(1), 4 (2) and 14 (3) cases, whereas Eq. 4 was for 1 case only.

We can read (1) as for patients on medication (Ses = 2) and with PDQ39 (quality of
life test result) smaller than 50.5 then his/her UPDRS will be smaller than 33.5.

3.2 Fuzzy Rough Set Approach

We have obtained our predictions using the generalized fuzzy rough set rules (GFRS)
with aggregation by the t.norm Łukasiewicz, similarity expressed as tolerance Eq. 3
(modified Gaussian from [7]), and implicator – Łukasiewicz; alpha precision was 0.05.
As the decision attribute must be nominal, so we have chosen classes that are similar to
already used in our previous section: “(-Inf, 33.5)’ = “1”; “(33.5, 43.0” = “2”; “(43.0,
63.0)” = “3”,: “(63, Inf)” = “4”. The examples of FRST rules are below:

(Ses=1)&(Epworth =”16")&(RSLat="192") =>(UPDRS="3") ð5Þ

(Ses=2)=>(UPDRS="1") ð6Þ

(Ses=1)& (Epworth =”1")&(RSLat="289") =>(UPDRS="4" ) ð7Þ

We can read Eq. (5) as for patients without medication (s#=1) and with Epworth
(quality of sleep test result) about 16 and saccade latency about 192 then his/her
UPDRS will be about 3 (between 34 and 63).
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FRST rules have some similarities to RST rules but there are not ‘crisp’ there are
fuzzy and more difficult to interpret as their fuzziness are not given directly as they are
dependent on aggregation, tolerance and implicator equations. Their advantage to RST
rules is that they cover all cases with the global coverage = 1. As above we have found
FRST rules for our model group of patients G2V1 and applied these rules to other
groups G1V1, G1V2, and G1V3 (Tables 6, 7 and 8).

Accuracies of out FRST predictions were inferior in comparison to FRS predic-
tions, but as before accuracy is increasing with each visit: G1V1 – accuracy was below
40%, for G1V2 – 54% and for G1V3 visit was over 60%. Also notice that we did not
get right predictions for UPDRS nominal values 2 and 3 that were between (33.5 and
43) and between (43 and 63), but we have got relatively good predictions for classes 1
and 4 were accuracy for decision classes ACC was almost for all estimations near 1.

Table 6. Confusion matrix for UPDRS of G1V1 patients by rules obtained from G2V1 patients
with FRST

Actual Predicted
“1” “2” “3” “4” ACC

“1” 19 0 0 5 0.79
“2” 2 0 0 4 0.0
“3” 2 0 0 11 0.0
“4” 0 0 0 3 1
TPR 0.826 0.0 0.0 0.13

TPR: True positive rates for decision
classes; ACC: Accuracy for decision
classes: the global accuracy was 0.38
and global coverage was 1.

Table 7. Confusion matrix for UPDRS of G1V1 patients by rules obtained from G2V1 patients
with FRST

Actual Predicted
“1” “2” “3” “4” ACC

“1” 18 0 0 0 1.0
“2” 4 0 0 2 0.0
“3” 2 0 0 13 0.0
“4” 0 0 0 7 1.0
TPR 0.75 0.0 0.0 0.32

TPR: True positive rates for decision
classes; ACC: Accuracy for decision
classes: the global accuracy was 0.54
and global coverage was 1.
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4 Discussion

In this work we have used c-granular computing to estimate disease progression in time
(longitudinal study) of patients with Parkinson’s disease (PD). As in each individual
PD symptoms and their developments are different (“No two people face Parkinson’s
in quite the same way”) we would like to know if we could predict a particular patient
progression by looking to more advanced group of patients.

We have used granular computing (GrC) with RST (rough set theory) and FRST
(fuzzy rough set theory). RST looks into ‘crisp’ granules and estimates objects by
upper and lower approximations that determine precision of the description as
dependent from properties of granules. Therefore RST can give very precise estimation

Table 8. Confusion matrix for UPDRS of G1V3 patients by rules obtained from G2V1 patients
with FRST

Actual Predicted
“1” “2” “3” “4” ACC

“1” 17 0 0 0 1.0
“2” 5 0 0 3 0.0
“3” 2 0 0 8 0.0
“4” 0 0 0 11 1.0
TPR 0.74 0.0 0.0 0.5

TPR: True positive rates for decision
classes; ACC: Accuracy for decision
classes: the global accuracy was 0.61
and global coverage was 1.

Fig. 2. C-granule path in disease development compared to the model
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but not for all objects (patients). This we can see in our results where we can precisely
predict symptoms (measured as UPDRS) of patients, but not all of them (global
coverage less than 1). If we make our granules fuzzy (not crisp) they can describe
properties of all objects (patients) with global coverage = 1, but less precisely. Our
present results might be a good example of these differences.

Another important aspects of our approach are similarities between findings all-
important aspects (symptoms) of the disease and recognition of the complex object
(Fig. 1). In the visual brain we are trying to infer not clear visible object’s properties
from attributes we have classified from a to b and back to a new part (q) of the object.
However, it is a very important principle of our vision – the Model. It consists world,
particular environment and known objects. We are able to precisely classify a complex,
unknown object as we are tuning and comparing it particular attributes in many dif-
ferent levels (and even with different logics [1]). The model is important part of our
approach. Our model is determined by attributes of the more advanced group of PD –

G2V1. As it is illustrated in Fig. 2 granules describing different disease stages might
develop or stay constant. In each disease stage we are comparing actual symptoms with
the model and look for the similarities. We have demonstrated on group of over 20
patients that even if each one has different symptoms their path (c-granule) is going in
the direction of our model.

Changing treatment it might push patient symptoms to the different path. In order to
test such options we need several models and to measure how to change the treatment
to direct patients to different model. By testing several different patient’s groups, we
have demonstrated that the certain long lasting treatments can change disease develop
to new directions that are not similar to classical medication treatments [10].

In such cases one possible solution is to increase number of granules (dimension of
attributes) but adding new attributes that might ‘sense’ new direction of the disease
development. We are actually testing influence of the depression on the direction of the
symptoms changes, as depression is characteristic not only for Parkinson’s disease but
also for more common Alzheimer’s (AD) where late (after 65 years of age) onset AD
(LOAD) is in 50% related to depression. Others have proposed similar AI predictive
methods: to voice changes [11], by using supporting vector machine [12] or modular
approach [13] based on interactions between motor and psychological tests [14, 15].

In summary, we have demonstrated that by using approach similar to the visual
brain intelligence might give us a new way of look into similarities between different
groups of patients. In addition, we might see longitudinal studies as c-granules and
measure symptoms by distance to the Model (advance stage of the disease).
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