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Basic Difference Between Brain and Computer:
Integration of Asynchronous Processes Implemented

as Hardware Model of the Retina
Andrzej W. Przybyszewski, Paul S. Linsay, Paolo Gaudiano, and Christopher M. Wilson

Abstract—There exists a common view that the brain acts like a
Turing machine: The machine reads information from an infinite
tape (sensory data) and, on the basis of the machine’s state and
information from the tape, an action (decision) is made. The
main problem with this model lies in how to synchronize a large
number of tapes in an adaptive way so that the machine is able
to accomplish tasks such as object classification. We propose that
such mechanisms exist already in the eye. A popular view is that
the retina, typically associated with high gain and adaptation
for light processing, is actually performing local preprocessing
by means of its center-surround receptive field. We would like
to show another property of the retina: The ability to integrate
many independent processes. We believe that this integration
is implemented by synchronization of neuronal oscillations. In
this paper, we present a model of the retina consisting of a series
of coupled oscillators which can synchronize on several scales.
Synchronization is an analog process which is converted into a
digital spike train in the output of the retina. We have developed
a hardware implementation of this model, which enables us to
carry out rapid simulation of multineuron oscillatory dynamics.
We show that the properties of the spike trains in our model are
similar to those found in vivo in the cat retina.

Index Terms—Brain computation, quasi-periodic oscillations,
synchronization, universal Turing machine, visual system.

I. INTRODUCTION

THERE is an extensive literature describing the similarities
between the functioning of neural connections in the brain

and an algorithmic machine (e.g., [1]–[3]). However, a different
view is presented in several papers that the brain may not be
performing computations in the sense of the universal Turing
machine (e.g., [4]–[6]). In the following two examples, we will
introduce some differences between the brain and a Turing ma-
chine. In this work we have modeled a small, autonomous part
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of the brain, namely, the retina. We will describe processes re-
lated to retinal computation in relationship to two of its proper-
ties: maintained neural activity and synchronization. In the first
case (maintained neural activity), if we consider the brain as a
Turing machine, maintained network activity in the retina may
give different results for repeated computation of the same input.
This seems counterintuitive when compared with the results ob-
tained on digital computers, however, notice that the definition
of a Turing machine states that action is determined by input
and internal state. Because the latter is constantly changing in
the brain, the same inputs can give rise to different activations. In
the second case (synchronization), it is well known that different
parallel pathways in the retina operate with different speeds, as
shown for example in the pathways that originate with type
and type retinal ganglion cells. Also, it is known that dif-
ferent levels of light adaptation significantly change delay and
speed of retinal processing. This would indicate that informa-
tion coming from different parallel pathways is not synchro-
nized, which may result in a discrepancy in the results of neural
computation across pathways as the speed of the various path-
ways changes. These discrepancies can be observed on several
time scales by synchronizing these processes in different time
periods.

Unlike digital computers, where a central clock paces each
calculation with a single-bit precision, brain neurons show vari-
able, only partly synchronized patterns of the single-bit spike
trains. In addition to the information carried in spike trains, it
is likely that additional information is carried in the so-called
“maintained neural activity.”

A common practice in studies of neural activity is to remove
all variability and assume that significant information carried by
neural signals is synchronized with the input (stimulus). Typi-
cally, the same experiments are repeated many times and the
cell’s responses are averaged across multiple readings. This ap-
proach assumes that the information in the spike trains consists
of two main components: 1) a signal, presumed to be the in-
variant part of the spike train, which is constant for the same
input; and 2) noise, the variable part of the spike train, which re-
sults from many different processes related to the maintenance
of the brain independent of the actual sensory input. Response
averaging removes noise and extracts signal under the assump-
tion that the signal always stays in the same phase related to
the input. However, recent experiments [7] show that neurons in
the visual cortex show synchronized oscillations in response to
relevant stimuli which are not always phase-locked to the stim-
ulus and would go unnoticed in averaged responses of a single
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neuron [7]. These oscillations can be seen in the integrated ac-
tivity of many neurons, in what is referred to as local field poten-
tial. If these integrations are performed along neurons extracting
certain input (stimulus) attributes, they may encode figure-back-
ground separation in the higher visual areas [7]–[10], [107].

The purpose of this study is to show that already in the retina
such oscillatory processes exist, and that they extract certain at-
tributes of the stimulus. Therefore, we hypothesize that the pur-
pose of retinal processing is not only to perform gain control,
adaptation, and center-surround receptive processing, but also
to integrate many processes related to properties of the inputs.
This manifests itself as oscillations observed in the local field
electroretinogram (ERG) [11] or in ganglion cell membrane po-
tential [11], [12].

In order to check this hypothesis, we have assumed, on the
basis of electrophysiological experiments (see Section I-A), that
in the retina there are at least three assemblies of networks/
neurons showing oscillations in different ranges of frequencies.
There is also more direct experimental evidence that the intra-
cellular generator potential in retinal ganglion cells, which is a
membrane potential without spikes [9], shows oscillations that
are not necessarily phase-locked to the light stimulus [13]. By
changing stimulus attributes, the generator potential oscillations
could be changed from locked to the input to nonlocked, and
vice versa. In contrast, nonoscillatory components of the gan-
glion cell responses are always locked to the stimulus [13].

Our approach is not completely new. Wilson and Cowan
[14] proposed that the central nervous system can be divided
into inhibitory and excitatory oscillating populations with
mutual coupling between them. This theory was later applied
by Freeman and others to specific parts of the brain such as
the olfactory system [15]–[17], [106], and compared to elec-
troencephalograms (EEG) signals in animals [16]. Baird [11]
used a similar model to construct a unified theory of pattern
recognition and associative memory. However, theoretical (ana-
lytical) analysis of the behavior of coupled nonlinear oscillators
even for small numbers of oscillators is difficult [18]–[20].
Also, typically nonlinear oscillators exhibit quasi-periodic or
chaotic behavior, which looks similar to the noise observed in
experimental recordings.

A. Experimental Evidence of Different Oscillatory Processes
in the Retina

As early as in 1928, Adrian and Matthews [21] reported that
illumination of a large portion of the retina induced a rhythmic
discharges. They suggested that the oscillations were evoked
by the lateral summation of multiple inputs. Since this initial
observation, retinal oscillations have been observed in many
laboratories [21]–[26]. It has been found that the frequency
and duration of the retinal oscillations can be affected by light
intensity [11], [21], rate of stimulation [21], and application of
drugs or anaesthetics [11], [21], [24], [25], [27]. It has been
suggested that the retinal oscillatory potentials are postsynaptic
in origin and are generated by reverberating interaction of
ganglion, amacrine, and interplexiform cells in the inner retina
[28]–[34]. The physiological interpretation of these oscillators
is as follows.

The slowest oscillator, with frequencies around 6 Hz, may
be associated with the horizontal cell network [35]–[37]: In re-
sponse to sinusoidal gratings at photopic luminance level, the
temporal transfer function of horizontal cells exhibits bandpass
characteristics ranging from 3 to 10 Hz with a maximum re-
sponse amplitude of 3–6 Hz [36].

A faster oscillator, with frequencies around 45 Hz, may
be related to amacrine cells. Narrow-field bistratified (NFB)
amacrine cells have been shown to respond to light with 50-Hz
oscillatory potentials [38]. NFB amacrine cells are in the rod
pathway in the rabbit retina. The origin of their oscillatory
responses is unclear, but these oscillations appear to sharpen
the transient on-response of the amacrine cells in comparison to
the response of the rod bipolar cells [38]. Sakai and Naka [39]
have recorded simultaneously from N-ON (NA) and N-OFF (NB)
amacrine cells in the catfish retina. In these cells, the power
spectra of the membrane noise in the dark or during steady
illumination often showed a peak at 35 Hz. Such membrane
noise is synchronized in phase among NA and NB cells, and is
out of phase between NA and NB cells in the dark [39]. Similar
synchronized oscillations were recently observed in AII cells
in the mammalian retina [40].

Even faster oscillations, with frequencies around 140 Hz may
be related to the push-pull effect of ON-OFF bipolar cells [41].
Experimental studies of the vertebrate retina, including the pri-
mate, have shown that oscillatory potentials of the ERG are in
the range of 140 Hz [41]. The oscillatory potentials are prob-
ably generated by bipolar cells [24], [30], [31] based on the
following evidence: 1) oscillatory potentials, like bipolar cells,
extend over a substantial retinal depth [34]; 2) bipolar cells re-
ceive both rod and cone inputs, and oscillatory potentials show
interaction between photopic and scotopic inputs [42], [43]; and
3) bipolar cells are segregated into ON and OFF channels simi-
larly to oscillatory potentials [44]. We have found oscillations in
the range from several hertz to about 150 Hz in the intracellular
(generator) potentials of cat ganglion cells [13]. Frequencies in
the range 20–120 Hz were observed in the ganglion cell spike
trains [12], [26], [45].

B. Variability of Interspike Intervals and Noise

In the retina, spikes are generated almost exclusively in the
ganglion cells. Therefore, analog interactions between activities
of most retinal cells could be more sensitive to noise than inter-
actions between spiking cells. However, interactions between
nonspiking cells could be also a source of many different oscil-
lations in the intracellular potential of the ganglion cell. There
are many sources of noise in the retina such as the quantal nature
of light, fluctuations in membrane conductances, or quantal na-
ture of synaptic transmission. However, it is not clear how much
noise is in the ganglion spike trains.

Some theoretical research suggests that noisy systems of
coupled oscillators can produce a regular output. On the macro-
scopic level, a system of globally coupled oscillators may show
low-dimensional dynamics, while microscopic variables follow
high-dimensional chaos [46]–[49]. For example, Kaneko et al.
[47] showed that by adding noise to the microscopic level of a
system of globally coupled maps, their macroscopic behavior
changed from high-dimensional chaos to low-dimensional
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Fig. 1. (a) Electrical equivalent circuit model of a two-channel neuron:C—membrane capacitance,G —conductance of the potassium channel,V —equilibrium
potassium potential, andG —conductance of the sodium channel; (b) Oscillations of the Keener circuit with a large nonlinearity � = 0.01: Phase plot of current
versus voltage. The equilibrium point is determined by the crossing the nullclines, as described in Section II-A. The unstable equilibrium point is marked with a
dot.

noiseless motion. In addition, recent experiments [50], [51]
have shown that in response to a large class of rapidly varying
stimuli, retinal ganglion cell exhibited reproducible spike
trains. If the stimulus is repeated, the clusters of spikes occur
reliably at the same times, sometimes to within 1 ms. Similarly,
in other sensory systems like in the trigeminal system of the rat,
whisker deflections produce spikes which occur at precisely the
same time in each trial [52].

In this paper, we compare properties of the experimental spike
trains from the cat retina [13] with the train of pulses gener-
ated by a system of coupled nonlinear oscillators. We present
a network of seven ganglion cells ( -neurons) built in agree-
ment with anatomical and physiological retinal properties. We
built this simulated network in hardware as coupled nonlinear
oscillators.

There are several reasons for using electronic hardware to
simulate retinal processing. The primary reason is the ability
to scale the network size. In general, numerical integration be-
comes more costly as the number of neurons and neuronal con-
nections increases. In contrast, increasing the number of neu-
rons or connections in a hardware circuit may require additional
time for construction of the circuit, but once the circuit is built,
the speed of simulations is independent of the network size or
connectivity. In fact, our hardware circuit (as described in Sec-
tion II-B) was actually scaled to run at a speed significantly
higher than that of retinal cells. This makes it possible to run a
vast number of simulations, much more readily than could pos-
sibly be done in software even on the fastest computers. Hence,
a hardware model of the retina makes it possible to analyze
long spike trains in stable conditions and to explore additional

regions of the potentially infinite space of stimulus amplitude
and frequency combinations. This flexibility has the potential to
yield new perspectives on retinal dynamics. We were especially
interested in differentiating regions of the input space where os-
cillations were locked or unlocked to the input.

Another interesting aspect of using hardware for simulation
of retinal cells is that our model, just like retinal cells, is noisy.
Circuits were not thermally stabilized, which gives rise to en-
dogenous sources of noise, not unlike the noise that is inherent
to retinal cells. Therefore, we were also interested in the fol-
lowing question: If the irregularities in the spike trains are not
related to noise, what kind of information do these irregularities
carry?

II. METHODS

A. Single Circuit

Fig. 1(a) presents an electrical equivalent model of a two-
channel neuronal membrane. In real neurons, potassium (K)
and sodium (Na) conductances are time and voltage dependent.
Hence, we can express membrane potential as follows:

where is membrane capacitance, is membrane potential,
is potassium conductance, is the equilibrium potential

for potassium, is sodium conductance, and is external
current.

The membrane model from Fig. 1(a) can be generalized and
simplified to the FitzHugh–Nagumo equations [(1a) and (1b)].
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Fig. 2. (a) Schematic of the ganglion cell hardware model (G-neuron), which combines four oscillators (U1–U4) of the type shown in Fig. 1(b). In the retina,
oscillators U1–U3 do not generate spikes and they are presynaptic to ganglion cells (oscillator U4). (b) Seven-cell neural network in which each neuron excites
its two nearest neighbors (+), and inhibits all other neurons (�). These cells represent spiking ganglion cells in the retina. Their connections are related to gap
junctions between ganglion cells or between ganglion and amacrine cells, as discussed in Section II-C.

We utilize an analog circuit designed by Keener [54] as a basic
subunit for our hardware -neurons. This analog circuit models
Bonhöffer–van der Pol or FitzHugh–Nagumo equations

(1a)

(1b)

where is a positive constant determining the
nonlinearity (lower values of corresponding to higher nonlin-
earity), is the voltage that models cell membrane potential,
and is the membrane current. is a piecewise linear func-
tion which approximates a cubic polynomial [Fig. 1(b)]

if

if

if

where 0.71, 0.5, 0.2, and 1.6 are con-
stants, with determining resting equilibrium potential [fixed
point or limit cycle; shown as a dot in Fig. 1(b)], and is an
externally modulated input.

Fig. 1(b) represents limit cycle oscillations described by (1a)
and (1b). There are two nullclines which determine the trajec-
tory of the oscillations. If we set (1a) to zero, we will get the
first nullcline , with a characteristic S-shaped non-
linearity. By setting (1b) to zero, we will get the second nullcline
where , which is a line with the slope . The point
where the nullclines cross determines the equilibrium state of
the system. In Fig. 1(b), the equilibrium point is stable (this is
known as an excitable state). Changes in the external current

shift the S-shaped nullcline up and down, while changes in
the external voltage shift the nullcline with a slope in a

left–right direction. If we add positive voltage to the input, the
nullcline with slope moves to the right, and when it reaches
knee of the S-shaped nullcline, the equilibrium point becomes
unstable [shown as a dot in Fig. 1(b)]. This will start a limit cycle
oscillation. A similar effect can be obtained by adding an input
current and pushing the S-shaped nullcline upward.

By appropriate parameter choice, this circuit can model
retinal circuits or cells showing rhythmic activity that mimic
ganglion cell membrane properties [41].

B. G-Neuron

1) Physiological Correlates: An electronic analog of a
single, isolated ganglion cell ( -neuron) consists of four re-
sistively coupled circuits [Fig. 2(a)]. These oscillators have
different eigenfrequencies, with ratios (1 : 8 : 24 : 40). Three
of them have small nonlinearities whereas the
fourth, fastest oscillator is characterized by a large nonlinearity

.
2) Membrane Oscillator: The fastest oscillator with a large

nonlinearity generates signals similar to ganglion cell mem-
brane potentials. The ganglion cell’s membrane properties have
been simplified. In the model, membrane properties related to
integration of inhibitory postsynaptic potentials (IPSPs) and ex-
citatory postsynaptic potentials (EPSPs) from the dendrites and
cell body are reduced to a single point. Membrane permeability
is simplified to the two-ion channels characterized by proper-
ties of the sodium and potassium currents [Fig. 1(a)]. The slow
potassium current is approximated by a linear function. The
sodium current is fast and it has N-shape nonlinear char-
acteristics as a function of the membrane potential [Fig. 1(b)].
Depending on the value of the potassium potential, the circuit
oscillates spontaneously or is excitable [Fig. 1(b)].

3) Intraretinal Oscillators: The properties of three oscilla-
tors with small nonlinearities are related to the intraretinal os-
cillations. As described in the Introduction, the slowest oscilla-
tors are probably related to the horizontal cells network and in
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the model they are represented by an oscillator with eigenfre-
quency 1. The faster generator with eigenfrequency 8 may
be related to the amacrine cells’ properties. The faster generator
(eigenfrequency 24) may be related to bipolar cells. In this
paper, we selected frequencies of 6, 48, and 144 Hz for these
three oscillators, matching the ranges of frequencies observed in
the corresponding cell types, as summarized in the Introduction.

4) Driving Signal: The three generator potential oscillators
[on the left side of Fig. 2(a)] are driven simultaneously by the
input voltage signal . The driving signal simulates the
signal from the photoreceptors, which in our model is propor-
tional to light intensity. Photoreceptors have synapses with the
bipolar and horizontal cells. Only bipolar and amacrine cells
have direct synapses with the ganglion cells. Therefore, our
model simplifies retinal connections. The outputs of the three
generators are resistively coupled to a common point, which cor-
responds to the -neuron’s overall generator potential.

5) Antidromic Propagation of Action Potentials: The gener-
ator potential is a sum of the EPSPs and IPSPs. The action po-
tentials are generated in the axon hillock, the initial narrow part
of the axon with the highest density of Na channels and lowest
threshold [55]. Spikes generated in the axon hillock spread in
two directions: along the axon (orthodromic direction), and into
the soma and dendritic tree (antidromic direction) [56]. In the

- neuron, as in the retinal ganglion cells, the oscillator that
simulates generation of the action potentials is strongly driven
by the generator potential, and in turn has a relatively smaller
influence on the generator potential itself.

6) Implementation: One advantage of using hardware is that
it is possible to scale the speed of the circuit to accelerate sam-
pling, while preserving the overall network characteristics. In
order to shorten simulation time, the frequencies of all oscilla-
tors were scaled up ten times higher than in the retina to the
following frequencies: 60 Hz : 480 Hz : 1.44 kHz : 2.4 kHz. As
described previously, the three oscillator corresponding to in-
traretinal processes are connected in parallel and driven from
a single source [Fig. 2(a)]. The output of the oscilla-
tors drives the membrane oscillator. Replicating the antidromic
spread of action potentials, the membrane oscillator gives feed-
back to the three slower oscillators. The antidromic coupling
is attenuated relative to the orthodromic coupling by means of
buffer amplifiers and and the corresponding resistors
and [with in Fig. 2(a)].

Each oscillator can be described by (1a) and (1b) with the
nonlinearity coefficient and different period of oscillation as
described previously. Coupling will modify equations in the fol-
lowing ways.

Oscillator :

(2a)

(2b)

Oscillator :

(2c)

(2d)

Fig. 3. Comparison between intracellularly measured ganglion cell activity in
the cat (middle two traces) and the response of theG-neuron (top two traces) to
a sinusoidal input (bottom trace). As described in [13], the cat was under pento-
barbital anaesthesia, artificially ventilated. A glass pipette microelectrode was
used to record intracellular ganglion cell activity in the optically intact in situ
eye, while the eye was stimulated with spots of light sinusoidally modulated in
intensity. The generator potential was extracted using a wavelet method [12] (as
a sum of input signals; fourth trace from the top) from the intracellular mem-
brane potential (third trace from the top) [13]. All signal amplitudes were nor-
malized. The frequency of the sinusoidal input is 16 Hz for the cat and 160 Hz
(scaled ten times) for the model.

Oscillator :

(2e)

(2f)

Membrane oscillator :

(2g)

(2h)

where the coefficient and the nonlinear function are the
same as in (1a) and (1b); , ,

is related to the coupling coefficient between the three
presynaptic oscillators, is related to the coupling coef-
ficient from the presynaptic oscillators to the membrane of
the ganglion cell oscillator, and is related to the feed-
back from the action potential generated in the axon hillock
to the membrane generator potential (see Section II-B5).

7) Model Parameters: The parameters of the hardware cir-
cuit were tuned to simulate light responses of retinal ganglion
cells. For example, Fig. 3 shows the intracellular recordings of a
single ganglion cell in the retina in vivo, along with the response
of a single, isolated -neuron. In this case, the input consists of
a sinusoidally modulated light spot (Fig. 3, bottom trace). In
Fig. 3, the second trace from the top represents voltage ampli-
tude changes in the model; and the fourth trace from the top
shows the generator potential recorded from the retina. Slow re-
sponses locked to the stimulus and fast oscillations of the gen-
erator potential in the retina are similar to voltage changes in
the hardware circuit (fourth and second trace from the top).
Spike trains in the model (top trace) and in the retina (third trace
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from the top) show similar one-per-stimulus period bursting, al-
though in the retina the bursts are less regular. As we have shown
in [57], one source of the burst modulation that is not captured
in the hardware model is related to slower membrane ion chan-
nels. Another source may be related to the interactions between
ganglion cells [58].

C. -Network: Network of Coupled -Neurons

1) Physiological Evidence: To simulate a simplified center-
surround circuit, our hardware model consists of a ring of seven
resistively coupled -neurons [Fig. 2(b)]. Each -neuron is
coupled to its two nearest neighbors with strong excitation, and
to all other neurons with inhibition.

There is no evidence that retinal ganglion cells make chem-
ical synapses in mammalian retinas. However, there is strong
evidence from the Limulus [59] to primate retina about the lat-
eral inhibition network formed by eccentric (ganglion) cells. In
primates, the lateral inhibition network is built by gap junctions
between parasol and amacrine cells [60], [61]. According to the
model of Kenyon and Marshak [60], the small amacrine cells
disinhibit parasol cells, whereas the axons of the large amacrine
cells inhibit parasol cells over a large area of the retina [60].
As one consequence of these coupling, synchronized firing be-
tween ganglion cells in primate retina were modeled [108] and
experimentally confirmed [62].

Similar effects were recorded in the cat, rabbit, and sala-
mander retinal ganglion cells. Multielectrode recordings from
cat [63]–[65], rabbit [66], and salamander [67], [68] retina have
shown tightly correlated activity of adjacent ganglion cells and
much weaker activity for distant pairs [64]. The strongest cor-
relations were between neighboring -cells (cells with large
overlapping receptive fields); the weakest were between -cells
(cells with small receptive fields) [64]. It is likely that reciprocal
correlations occur through electrical synapses [61], [65], [67],
[69]–[72]. The correlations between maintained firing are prob-
ably caused by shared active inputs, which are likely to be re-
lated to spiking amacrine cells [65].

2) Implementation: As shown in Fig. 2(b), -neuron N1
gives excitatory connections to two -neurons N2 and
N7. These excitatory connections are three times stronger than
the inhibition to all other neurons N3–N6. Both excitatory
and inhibitory connections are realized through subthreshold
(without spikes) coupling of the potential. The output of the
three oscillators in N1 (analog of the generator potential in the
ganglion cells) is connected to two amplifiers, one of which is
inverted to simulate inhibitory connections. The outputs of both
amplifiers are scaled appropriately by resistors and connected
to the inputs of other -neurons. Similar connections are made
for all other neurons as indicated by the dotted line for the N2
cell in Fig. 2(b).

D. Data Analysis

In order to validate our model we have compared signals from
the model to experimental recordings found in the literature and
obtained in our laboratory. We have analyzed: 1) spontaneous
(maintained) activity when the input signal was direct current
(dc) with 0 (dark) or higher (constant illumination) amplitude,

and 2) evoked activity when the input signal has a dominating
alternating current (ac) component (such as, for example, sinu-
soidal modulation of the retinal illumination).

1) Statistical Analysis:
a) Analysis of the spike interval variability: Spontaneous

activity in retinal ganglion cells has often been tested by sta-
tistical methods [73]–[75]. Several labs [73], [74], [76] were
interested in how the next spike interval is determined by the
preceding interval. They have found that the serial statistical de-
pendency of interspike intervals is weak and variable.

Frishman and Levine [77] have divided the relationship be-
tween spike intervals into short- and long-term dependencies.
Both were found to be weak, but the short-term dependency was
independent on the level of illumination, whereas the long-term
dependency increased at higher levels of illuminations. The au-
thors proposed a model with two sources of noise: distal and
proximal (for details, see Section IV). Levine [75] noticed that
the interval between spikes in the maintained discharges were
better approximated by a log-normal distribution than other dis-
tributions. For example, the gamma distribution applied by Kuf-
fler et al. [78] does not extend to frequently observed very long
interspike intervals.

Based on these and other findings, Levine and Zimmermann
[79] proposed a model for the variability of interspike intervals
during periods of maintained discharge. They characterized the
variability by the coefficient of variation (CV) s/m, the ratio of
the standard deviation of intervals between successive impulses
to the mean interval between impulses. This model [79], when
data are plotted in log–log coordinates, explains that maintained
discharge can derive its variability from linearly added noise in
the steady-state conditions, and from nonlinear interactions in
response to abrupt changes in illumination. Levine et al.’s anal-
ysis of the maintained ganglion cell activity compared different
statistical tests on a large amount of experimental data, and it is,
therefore, a good basis for our model verification.

b) Coefficient of the bursting regularities: A spike burst
was defined as a group of spikes separated by the longest
silent periods (spike interval) in each stimulus cycle [57].
Burst duration was defined as a sum of all interspike intervals
within a single burst. The coefficient of the bursting regu-
larity was defined as the inverse of the burst irregularity [57].
Burst irregularity is the standard deviation of the burst
duration SD , divided by the ratio of the average burst
duration mean to the duration of one stimulus period ;

SD mean . Burst regularity is equivalent to
an inverse of the standard deviation of the normalized burst
duration.

2) Dynamical Systems Analysis: In addition to the statistical
measures popular in neurophysiology as described previously,
we have characterized the responses of the model using dynam-
ical systems analysis.

a) Parameter space scan: Takahashi et al. [80] character-
ized the parameter space for the membrane of the squid axon.
The axon was periodically stimulated and its responses were
characterized by changing the stimulating current intensity
and the current pulse intervals [80]. We have performed a
similar search for a single Keener circuit and for a network of

-neurons.
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The periodicity of the signal in the Keener circuit (Fig. 4) or
the periodicity of the pulse train in the -neuron (Figs. 9 and 10)
are plotted as a function of the frequency and amplitude of the
driving source [81], [82]. The data were sampled at the drive fre-
quency. Period 1 repeated every sample; period 2 repeated every
other sample, etc. The root mean square (rms) error of the sam-
ples had to be within a small error range to count as periodic. In
other words, if response of the circuit repeats for every period
of the input signal, then the output is synchronized to the input
with period 1. If the circuit response repeats every second pe-
riod of the input signal, then the output is synchronized to input
with period 2, etc. If circuit responses are changing with each
period of the input signal then the circuit shows quasi-periodic
or chaotic oscillations. This method of analysis is very popular
in the dynamical systems area with many experimental applica-
tions, e.g., [81], [82]).

However, for the spike (pulse) train responses (Figs. 9 and
10) we modified the aforementioned method using the spike co-
incidence method. At first, we plotted the number of spikes as a
function of the stimulus interval length. If the number of spikes
in each stimulus period was the same, then we had period 1 re-
sponse; if number of spikes was the same every two periods of
stimulation, then we had synchronized response with period 2,
etc. (see Figs. 9 and 10, for examples). This is similar to the pre-
viously described method, but instead of using the analog value
of the output signal we use the number of spikes. However, this
method does not tell us how many spikes are in each period of
the stimulus, and whether the spikes or burst of spikes are reg-
ular within each period of the input signal (see also burst regu-
larity paragraph (Fig. 3) and experimental data in [9] and [26]).
Therefore, we have divided each period of the input signal into
subperiods and checked, for a large number of periods of the
stimulus, whether each spike falls into the same subperiod (co-
incidence method). If this was the case, than the circuit was said
to respond with period 1, but with a higher number of spikes
(marked with darker colors in Figs. 9 and 10) in each period of
the input signal.

b) Close return histogram: Pulses simulating ganglion cell
spikes were generated by -neurons and encoded into single-bit
0–1 trains. For the spontaneous, nondriven activity, we have
applied the close return histogram technique. This technique
from dynamical systems theory, originally proposed by Lathrop
and Kostelich [83], was applied to the interpulse intervals ,

. A window size was chosen and a histogram
was created by counting, for each delay , the number of times
the condition was true.

For the first delay, the number of spikes within this window
was calculated for all . In the next step, the delay was increased,
and again number of spikes with this delay (period) was calcu-
lated for all . This procedure was repeated until period 100.
The maxima in the close return histogram are related to unstable
periodic orbits in the time series [83]. The unstable periodic or-
bits are periodic orbits embedded in the chaotic attractor. This
measure is based on the fact that unstable periodic orbits are
related to saddle orbits, which are characterized by attracting
and repelling directions. Trajectories approach the saddle or-
bits along the attracting direction and remain nearby before they
are pushed away. We assume that when a trajectory is near the

saddle orbit, the resulting spikes (pulses) have similar intervals,
with a difference within the window size which depends on
how closely trajectory approaches a saddle orbit [83].

III. RESULTS

A. Single Keener Circuit Responses

In order to characterize the behavior of the Keener circuit, a
single circuit [Fig. 1(a)] was driven with a sine wave of variable
amplitude and frequency. The result of a parameter space scan
is shown in Fig. 4. The response of the circuit was sampled on a
100 100 grid of amplitude and frequency, and color-coded ac-
cording to the period of the circuit response relative to the period
of the driving sine wave. The resulting plot exhibits a number
of color “tongues,” i.e., areas of the response space that share a
common periodicity. The periods of several prominent tongues
have been shown; the most visible are period 1 on the left (ma-
roon) and period 2 on the right (yellow). For period 2 the driving
potential completes two cycles in the time it takes the circuit
to complete one. The white zone represents quasi-periodic re-
sponses; that is, the circuit and the sine wave do not phase-lock
and remain individually periodic and uncorrelated. The ordering
of the tongues and their periods is typical of a two-frequency
quasi-periodic system (see, for example, [20] and references
therein). The random scatter of colored points throughout the
white zone and in the tongues is due to inefficiencies in the on-
line computer algorithm used to perform the scan. No attempt
was made to thermally stabilize the circuit, resulting in the slight
“snakeiness” and occasional discontinuities that are especially
apparent when the tongues are thin.

B. Spontaneous Oscillations in the -Neuron Network

In order to simulate ganglion cell spontaneous activity, the
limit cycle was chosen as a resting state of each generator po-
tential oscillator. Coupled -neurons generated pulse trains that
are different for each of the seven coupled neurons [Fig. 5(a)].
These differences are related to small variations in their setups,
their components, and inhibitory connections between them
[Fig. 2(b)]. -neuron activity in Fig. 5(a) looks similar to the
maintained ganglion cell multiunit activity recorded in darkness
from the salamander retina [84]. Spontaneous activity in the sala-
mander retina is slower than in the cat, but it shows limited time
and space synchronization between different cells as in Fig. 5(a).

1) Statistical Analysis: In Section II, we reviewed the statis-
tical methods used to analyze maintained activity in the retinal
ganglion cells. Levine [75] found that a log-normal distribution
provides the best fit to the ganglion cell maintained discharges.
We did similar calculations for pulses generated by -neurons
when a dc (constant) input signal was set between 0–0.4 V. As
found in ganglion cells [75], [85], [86], the interval distribution
histogram of pulses generated by -neurons fit the log normal
distribution well. In Fig. 6, we have plotted the coefficient of
variation as a function of the mean spike rate in logarithmic co-
ordinates. Experimental data for different ganglion cells were
approximated by a power function: CV where is the
mean spike rate [75]. In our plot of CV , we
have found a similar slope to that described for the cat ganglion
cells. Our 95% confidence interval for the slope was ( 0.6561,
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Fig. 4. Parameter scan of the response of the Keener circuit driven with a sine wave of variable frequency and amplitude. The response is sampled on a 100� 100
grid of amplitude and frequency. Color coding is used to highlight periodicity relative to that of the driving sine wave. The biggest tongue on the left (maroon)
represents period 1. On the right of the figure part of the tongue of period 2 is visible (yellow). Other periods in the figure include: period 3 in light maroon, period
4 in purple, and period 5 in dark blue. Other periods show increasingly small tongues.

Fig. 5. (a) Spontaneous activity of sevenG-neurons represented by irregular pulses in time. (b) Activity of the sameG-neurons when one of them (N4) is forced
with sinusoidal input.

0.5029), while the slope calculated for 13 ganglion cells in the
cat was 0.51 [38] and 0.55 or 0.59 for different types of
anaesthesia [39].

2) Dynamical Systems Analysis: In Section II, we explained
that the close return histogram [83] can classify how periodic or

aperiodic the pulse train is. As discussed previously, the pulse
trains generated by our model have similar statistical properties
to the maintained activity of retinal ganglion cells. We were in-
terested in finding out what periodicity can be expected in the
pulse train generated by the network when there is no input
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Fig. 6. Statistical analysis of spontaneous activity in G-neurons. Log–log plot of the CV as a function of the mean rate (r) between impulses (circles). The best
fit was CV = ar , shown here as a continuous line. The dashed lines show the 95% confidence interval.

Fig. 7. Close return histogram for spontaneous activity of G-neuron N4 (25 000 spikes). The x-axis shows recurrent time n as the delay between spikes (see
Section II-D2b), while the y-axis shows the number of points (times) when the difference between spike intervals is small (within the ! window size—Section II).

signal driving the circuit. As described in Section II, we cal-
culated the number of spikes within periods growing from 1 to
100. We have found that the interval distribution histogram in
the pulse train generated by our model exhibits periodicity (pe-
riod 1) for a delay of 32, which is equivalent to 57.5 ms
(Fig. 7). This is the shortest period orbit, referred to as the pe-
riod 1 saddle [83]. Fig. 7 also shows an orbit with period 2 (local
maximum at 64). This reflects the existence of unstable
periodic orbits, suggesting quasi-periodic or chaotic underlying
dynamics in the coupled generators.

C. -Network Responses to Sinusoidal Driving of -Neurons

1) Spike Train Changes: A sinusoidal input applied to one
of the -neurons (N4) strongly increased regularities in the ac-

tivity of most -neurons [Fig. 5(b)]. The nearest neighbors (N3
and N5) of the driven -neuron showed stimulus-locked ac-
tivity with the input. Other -neurons showed a more compli-
cated relation to the stimulus: -neurons N2 and N6 generated
spikes most frequently in counterphase with -neurons N3 and
N5. N1 and N7 were even less correlated to the input, but were
also largely in counterphase. Driving three -neurons simulta-
neously (N3-N5) phase-locked them strongly and inhibited N2
and N6 units, which were mostly active in phase with the input.
N1 and N7 were lightly excited and active in counterphase to the
input. We have driven with a sinusoidal signal a single -neuron
(N1), or two -neurons (N1 and N2), or more, up to all seven

-neurons, and calculated regularities of the bursting in the N1
-neuron. We have calculated pulse burst regularities in the
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Fig. 8. (a) Schematic picture represents G-network stimulation with different sizes of light spots. (b) Coefficient of the burst regularity (inverse of normalized
standard deviation of the burst duration; see Section II) as a function of the spot size. In experiments on a cat, the spot size is represented in degrees, while in the
model the spot size was related to stimulation of 1, 2, 3, 5, or all 7G-neurons. A spike burst was defined as a group of spikes separated by the longest silent period
in each stimulus cycle. Burst duration was defined as a sum of the interspike intervals in the burst. Comparison of the data measured in the cat retina in vivo as
described in Fig. 3 [13], [57] at temporal frequencies 4 and 16 Hz and measurements in the model (middle trace for the G-neuron).

model and compared them with the spike burst regularities in the
cat ganglion cell obtained by changing the light spot size from
0.2 to 0.7 as schematically shown in Fig. 8(a). Fig. 8(b) shows
measurements from a retinal ganglion cell and from the model.
Increasing of the stimulus size (in our model, corresponding to
an increase in the number of stimulated -neurons) caused at
first a decrease, and subsequently a very strong increase in the
response regularity in the ganglion cells and in the model.

2) Complex Structure of the Network Activity: We have
analyzed -network responses to sinusoidal inputs using
the coincidence algorithm. We have sinusoidally stimulated
one -neuron and counted the number of spikes in intervals
ranging from very narrow (exact spike coincidence) to the size
of stimulating period. We have coded the number of spikes in
each interval in intensity (darker = more spike) and plotted the
interval size as a function of the signal frequency input (Figs. 9
and 10). In Fig. 9, the same -neuron was driven and analyzed
[N1 neuron in Fig. 2(b)]. Period 1 oscillations synchronized
with the stimulus were dominating in Fig. 9. A driving signal
with frequency between 120–160 Hz (12–16 Hz in the retina)
and small amplitudes evoked period 2 oscillations (drivers
complete two cycles when pulse train shows only one cycle).
The period 3 oscillations dominated only in a very small range
of frequency—amplitude parameters.

However, neighboring neurons show a completely different
behavior. For example, in Fig. 10, one -neuron (N1) was
driven and the neighboring neuron [N2 in Fig. 2(b) was ana-
lyzed]. In the neighboring -neuron, as shown in Fig. 10, many
different oscillations interleaved in a manner which resembles
“Arnold tongues” observed in a single Keener circuit (Fig. 4).
However, a more careful analysis showed that in this map, cones

with various periods were strongly deformed Arnold tongues.
Period 1 oscillations had one dominating peak around 60 Hz
and another one around 30 Hz (the slowest oscillator in the net-
work is 60 Hz; it is related to the 6-Hz oscillator in the retina).
Two period-3 cones were: the first one around 90–100 Hz and
the second one around 180 and 210 Hz (9–10 Hz, and 18–21 Hz
in the retina). Similarly, period-2 and period-5 cones showed
double peaks.

Therefore, the cones in the frequency–amplitude parameter
space for the network (Fig. 10) were relatively wider and had
different shapes than the cones observed in the isolated Keener
circuit (Fig. 4). Also, scaling of the cone amplitude for the net-
work is different than for the Keener circuit. In the network
(Fig. 10), sensitivity to all periodic oscillations is almost similar,
whereas in the Keener circuit, the cone size decreased when the
period number increases. This could be the reason why multi-
period oscillations were experimentally observed (e.g., [12]).

IV. DISCUSSION

A. Single Neuron Properties

Whether modeling brain function or building brain implants,
a fundamental question is: How complicated should the proper-
ties of a single neuron be? In this section, we will describe and
discuss several simple models of neurons based on cell mem-
brane properties.

The simplest model of the membrane properties of a neuron
is based on the original proposal of McCulloch–Pitts, which
sums signals between threshold and saturation. The output of
this model is a continuous function related to the spike rate of
the real neuron.
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Fig. 9. Spike coincidence response of the G-neuron network driven with a sine wave of variable amplitude and frequency. Driven neuron responses are shown.
Response is sampled on a 40� 100 grid of amplitude and frequency. Color coding is used to highlight the number of spikes in each interval relative to the driving
sinusoid. If the number of spikes is the same in each period of the driving signal, then network response is synchronized with input with period 1. If the number
of spikes repeat with every second period of the input signal, then the circuit oscillation has period 2, etc. The first three periods are labeled; higher order periods
have darker colors.

A modification of this model, known as the integrate-and-fire
neuron, generates a short pulse (spike) when the sum of the input
signals reaches a threshold. A possible output of this model is
a train of simulated spikes. However, both the McCulloch–Pitts
and integrate-and-fire models do not capture dynamics related
to action potential generation.

A modification of the integrate-and-fire model, the leaky inte-
grate-and-fire neuron, introduces a time constant as a
product of the capacitance and leak resistance of the cell’s
membrane. After spike generation and reset of the membrane
potential , the prevailing input leads to a decay of the po-
tential with the leak time constant . This process simulates
a refractory period during which the probability of spike gener-
ation is reduced.

The leaky integrate-and-fire model has been successfully
used to simulate the spike generation mechanism of retinal
ganglion cells [50], [87]. In a previous paper, we have improved
Lankheet’s model [87] by replacing the leaky integrator with a
cell membrane multi-ion channel model based on patch-clamp
experiments [57].

In this paper, membrane properties were limited to two-ion
channels using sodium and potassium channels, with proper-
ties defined by the nonlinear differential equations proposed by
FitzHugh [88], and implemented by Keener [53]. An equivalent
model was recently proposed in [105]. In the following, we will

explain why introducing membrane properties related to the ion
channels, as analyzed in the stimulus related parameter space,
is crucial for our model.

As we have shown in Fig. 4, our model shows a characteristic
property in the frequency–amplitude parameter space: Arnold
tongues. In order to reveal this property, we scanned the param-
eter space by changing input signal frequency and amplitude
(10 000 different values) and analyzed circuit responses to each
signal. As explained previously, the circuit response is said to
have period 1 if the response is synchronized with each period
of the input signal, period 2 if the response is synchronized with
every other period of stimulation, and so on. If the response does
not repeat, the output signal is not synchronized with the input
(white area in Fig. 4). Notice that when the amplitude of the input
signal is larger, then the circuit responses have wider range of
synchronization. This is evident in Fig. 4 by observing that the
areas of constant periodicity have a conical shape. As one can
notice in Fig. 4, noise causes deformation of the cones. These de-
formations are more significant for lower amplitudes and higher
frequencies in the input signal. In the retina, adaptation processes
guarantee sufficiently large amplitude. Therefore, noise will
have more significant influence on oscillations of higher order.
One option to decrease the negative effect of the noise is to create
(possibly by learning in the higher brain areas) appropriate
oscillating circuits tuned to the significant frequencies.
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Fig. 10. Spike coincidence response of the G-neuron network driven with a sine wave of variable amplitude and frequency. Responses of near neighbors of the
driven neuron are shown. Response is sampled on a 40� 100 grid of amplitude and frequency. Color coding is used to highlight the number of spikes in each
interval relative to the driving sinusoid. The first several periods are labeled; higher order periods have darker colors.

The order evident in the Arnold tongues shows character-
istic period adding, whereby adding the periods of two larger
cones gives the period of the cone between them. For instance,
the largest cone represents period 1 (1 ) oscillations (Fig. 4),
while the cone in the middle has period 3 (3 , third subhar-
monic) oscillations. The largest cone between them has period
4 , the cone between 1 and 4 has period 5 (5 ), etc.
This is similar to physiological experimental findings from the
squid axon [80], and to other experimental findings related to the
one-dimensional (1-D) circle map model [89]. In the standard
circle map, increasing nonlinearity from zero to one increases
regions where the solution is locked to the input frequency [89].

Nonlinearity in the circle map plays a similar role to the in-
crease of the input amplitude in the FitzHugh–Nagumo equa-
tion [(1a) and (1b)]. In general, dissipative properties of the
Hodgkin–Huxley membrane equations are responsible for the
areas of periodic responses (frequency locking) represented by
the Arnold tongues (Fig. 4).

As a consequence, synchronization is widespread in many
brain structures. This means that for certain conditions, high-di-
mensional differential equations describing circuits of neurons
have a low-dimensional solution (1-D for the limit cycle de-
scribing synchronization) [90]. Therefore, activity of the whole
neuron population may divide into synchronized subpopula-
tions. These subpopulations become adaptive units representing
many parallel processes responsible for extraction of specific

attributes. Subpopulation synchrony will generate spikes by
increases in the EPSP at the next stage neurons.

B. -Neuron

We have built a hardware model of the ganglion cell
( -neuron) according to experimental data. Our -neuron
provides a reasonable replica of intracellular recordings from
the cat retinal ganglion cells [13] and digital simulation of their
responses to light flicker [57], [91].

Each -neuron consists of four coupled nonlinear oscilla-
tors. Three oscillators are simulating intraretinal processes and
the fourth one is related to the cell’s membrane properties. The
eigenfrequencies of all oscillators are similar to experimental
data from the retina (see Introduction). As was described in
Section II, neural circuits in the retina show behavior similar to
the behavior of the hardware oscillators we have created (Fig. 3).

C. -Network

In general, we have found many similarities between proper-
ties of the pulse train generated by our model and spike trains
recorded from retinal ganglion cells. We have divided our anal-
ysis into two parts: 1) maintained network activity, and 2) driven
network activity.

1) Maintained Network Activity: Statistical properties of the
spontaneous activity in a cat ganglion cells [75], [79] have been
compared to the maintained network activity of our -neurons.
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We have found that the spike intervals and coefficient of varia-
tion plotted as a function of mean spike rate have similar char-
acteristics for the ganglion cells and for the -neurons.

Frishman and Levine [77] have proposed that the variability
(noise) in the maintained ganglion cell activity has two sources:
a distal source and a proximal source. They did not exactly iden-
tify different noise sources, but distal noise seems not to be re-
lated to photoreceptor isomerization. Their restriction was that
between the absorption of photons and the source of the noise
there must be the low-pass filter. This filter can be within the
photoreceptor or in the receptor-bipolar cell synapse. The noise
generated in the distal retina and signals from photoreceptors
after the high-pass filter interact with the second source of noise
from the proximal retina.

This model could explain properties of the maintained ac-
tivity at different levels of constant illumination. In our model,
interactions between several intraretinal subsystems lead to sim-
ilar results, but instead of noise modified by different filters
[77], [92] we have introduced three different oscillators. From
the experimental point of view, long and very stable continuous
recordings are required to differentiate between noise, quasi-pe-
riodic oscillations, and chaos.

We have analyzed a 25 000-pulse train from our model by
means of the close return histogram technique (Fig. 7) and found
that maintained network activity consists of quasi-periodic or
chaotic oscillations. Our results agree with the recent findings
showing that very long periods of the maintained network ac-
tivity in the cat retinal ganglion cells have fractal properties
[93], [94].

Similarly to the retina, spontaneous activity of neurons in the
primary visual cortex (V1) is variable and often assumed as
noise or as playing no significant functional role [95]. However,
there is evidence that it is not the case. Recently [96]–[98] and
earlier [99], [100], researchers at Grinvald’s Laboratory in Neu-
robiology Department, Weizmann Institute of Science, Rehovot,
Israel, and elsewhere found that the pattern of spontaneous ac-
tivity in the network surrounding a given neuron in V1, can pre-
dict the neuron’s responses to different stimuli. By correlating
spikes of the cell with the spontaneous activity of the neigh-
boring network, one can find preferred network states that de-
termine the preferred stimulus for the neuron. This provides fur-
ther evidence for the importance of cell-level and network-level
oscillations in the processing of information.

2) Driven Network Activity: Driven network activities
registered in the -neurons were compared to light flicker re-
sponses of the ganglion cells. We have found that in -neuron
networks, as in the retina, forcing even one -neuron evoked
responses synchronized with the stimulus [Fig. 5(b)], as is the
case with stimulation of the receptive field of a single ganglion
cell. Periodic stimulation increases the regularity in the spike
train in comparison to spontaneous activity [Fig. 5(a)]. When
the number of stimulated -neurons or size of the stimulus in
the retina was further increased, spike trains became even more
regular [62].

We have quantified these observations by plotting the coeffi-
cient of spike burst regularity as a function of the spot size or
number of stimulated -neurons (Fig. 8). In our model and in
the retina, we have observed similar changes in spike burst reg-

ularities: At first a decrease and later a strong increase of the
regularity with the number of stimulated neurons. Others [12],
[50], [51] have observed that when the whole retina was stimu-
lated, repeating the same stimulus many times evoked identical
responses each time. The spike trains recorded in ganglion cells
in response to the diffuse flicker stimulus can be predicted with
high precision by a model proposed by Keat et al. [52].

The first stage of the Keat et al. [52] model is a filter that
consists of a sum of sinusoidal functions with adjusted ampli-
tudes. The input of the filter is proportional to the amplitude
of the light stimulus, and its output simulates the ganglion cell
generator potential. The lowest frequency in their model of cat
ganglion cells was about 4 Hz, which is in the same range as our
slowest oscillator (6 Hz).

Our three intraretinal oscillators with small nonlinearities
generate signals similar to a sum of sinusoids with different
amplitudes, frequencies, and phases as in the filter proposed
by [52].

The next stages of their mode [52] consist of the signal
threshold and the leaky integrate-and-fire segments. Both
parts represent cell membrane properties. The model [52] is
restricted to temporal variations of the stimuli but it predicts
the time interval of every single spike. Therefore, this model
[52] supports our hypothesis that variability in the spike trains
expresses intraretinal processes and not exclusively noise.

In the experiment in which the stimulus is spatially restricted
to a single -neuron or to the receptive field of single gan-
glion cell, the responses show synchronization (with period 1)
to the stimulus for most stimulus frequencies and amplitudes
(Fig. 9). However, the responses of neighboring -neurons that
are not directly stimulated, show more complicated properties
(Fig. 10): They resemble Arnold tongues with many interleaved
oscillatory periods as a function of the frequency and ampli-
tude of the input signal. As we have mentioned previously, these
different oscillations are related to synchronization of different
neuronal subpopulations. Such situation is in Fig. 5(b), where
neighboring neurons show different patterns of responses partly
synchronized with the stimulus. One interpretation of the results
in Fig. 10 is that the stimulated neuron influences the sponta-
neous activity of neighboring neurons through lateral connec-
tions. As a result, the neighboring neurons exhibit complex re-
sponses and high sensitivity to the stimulus parameters.

V. CONCLUSION

Neurophysiological experiments [13], [57] and our present
model demonstrate that the output (ganglion cell activity) of the
retina, the first neural structure in the visual system, may exhibit
deterministic patterns of activity with and without input stimuli.

In particular, we propose that spike trains consist of several
components.

1) One component is related to the local integration of infor-
mation, in agreement with the center-surround receptive
field properties of retinal cells. This component is always
locked to the input, like the results of the same calculation
repeatedly done on a computer.

2) Additional components related to integration of informa-
tion on several different temporal scales. These compo-
nents are responsible for synchronization of processes,
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potentially extracting different stimulus attributes. They
integrate parallel computations by means of synchronized
oscillations in different frequency ranges and with dif-
ferent spatial extents. These components may or may not
be locked to the input, and, therefore, they may manifest
themselves as irregularities in spike trains.

In the lateral geniculate nucleus (LGN), it has been found that
activity from the retina is compared [101] with the positive feed-
back from the cortex [102] and modulated by many other struc-
tures [103]. In a theoretical model, we have proposed [104] that
the synchronization of neural activity in the retina may be related
to formation of the hypothesis about the stimulus. Synchroniza-
tion in the cortex may form the prediction about the perceived
object: Specifically, if the purpose of feedback from cortex is
to increase synchronization in LGN, this may be described as
checking a complex hypothesis through simple questions.
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