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Parkinson’s disease development prediction by c-granule
computing compared to different AI methods
Andrzej W. Przybyszewski a,b and Albert Śledzianowskia

aPolish-Japanese Academy of Information Technology, Warszawa, Poland; bDepartment of Neurology, UMass
Medical School, Worcester, USA

ABSTRACT
Both rough set theory (RST) and fuzzy rough set theory (FRST) are
related to intelligent granular computing (GrC) primarily with the
help of static granules. Our granules are sets of attributes
measured from Parkinson’s disease (PD) patient in a certain
moment of his/her disease. Our complex granule (c-granule)
approach was used to model longitudinal PD development. With
RST/FRST we were looking for similarities between attributes of
patients in different disease stages to more advanced PD patients.
We have compared group (G1) of 23 PD with attributes measured
three times (visits V1–V3) every half of the year (G1V1, G1V2,
G1V3) to the other group of 24 more advanced PD (G2V1). By
means of RST/FRST, we have found rules describing symptoms of
G2V1 and applied them to G1V1, G1V2, and G1V3. With RST
(FRST), we’ve got the following accuracies: G1V1 −59 (38)%; G1V2
– 68 (54)%; G1V3 – 86 (61)%, but global coverage for FRST was
better. We also tried to compare results with several different
machine learning methods, obtaining accuracies of G1V1 – 59%,
G1V2 – 73%, and G1V3 – 78%. In summary, several different
methods confirmed that generally one group of PD patients
during disease development become more similar to a different
group of more advanced PD.
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1. Introduction

Our goal was to simulate Parkinson’s disease (PD) development in time with the help of
granular computing (GrC) methods (Pawlak, 1991; Zadeh, 2002). As PD-related neurode-
generation (ND) starts ∼20 years before the first symptoms and during this period of
time, the ND process is effectively compensated by brain plasticity, each patient’s PD pro-
gressions are different.

In this work, we have used intelligent GrC based on the principle of complex object
classifications from the visual brain (Przybyszewski, 2008;, 2019). As stated in the schematic
(Figure 1), properties of the unknown object p are represented as α and compared with the
model αΜ (in the brain – possible objects (Przybyszewski, 2008), here symptoms of more
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advanced PDs). Its results rule β that determine new object’s properties or PD time
development.

2. Methods

Our data mining analysis is based on GrC implemented in RST (rough set theory) proposed
by Pawlak (1991) and FRTS (fuzzy rough set theory) by extending RST indiscernibility with
concepts of the tolerance (Zadeh, 2002).

Our data are converted to the decision table, where rows were related to different
measurements and columns represent different attributes. An information system
(Pawlak, 1991) is a pair S = (U, A), where U, A are non-empty finite sets called the universe
of objects U and the set of attributes A. If a ∈ A and u ∈ U, the value a(u) is a unique
element of V (where V is a value set).

We define, as in Pawlak (1991), for RST the indiscernibility relation of any subset B of A or
IND (B) as: (x, y ) ∈ IND (B ) or xI (B )y iff a (x ) = a (y ) for every a ∈ B, where the value of a(x) ∈
V. It is an equivalence crisp relation [u]B that we understand as a B-elementary granule. The
family of [u]B gives the partition U/B containing u will be denoted by B(u). The set B ⊂ A of
information system S is a reduct IND (B) = IND (A) and no proper subset of B has this prop-
erty (Pawlak, 1991). In most cases, we are only interested in such reducts that are leading
to expected rules (classifications). On the basis of the reduct, we have generated rules
using four different ML methods (RSES 2.2): exhaustive algorithm, genetic algorithm, cov-
ering algorithm, or LEM2 algorithm.

A lower approximation of set X ⊆ U in relation to an attribute B is defined as all elements
have B attribute: BX = {u ∈ U: [u]B ⊆ X}. The upper approximation of X is defined as some
elements have B attribute: B X = {u ∈ U: [u]B ∩ X≠φ}. The difference between B X and B X is
the boundary region of X that we denote as BNB (X ). The difference of B and B is empty,

Figure 1. It is a principal schematic of the intelligent GrC based on the brain intelligence. We observe a
limited part of c-granule g that is generally subpart ag of environment env in a time interval [t− Δ, t].
Interaction between env and ag in time t during ΔIntg,t,Δ (env, ag) represents α and results that rule (α
∩ αΜ, γ)−>β is learned by ag, where γ represents properties of the structure g, and α property of the
interaction process, and β describes unknown, expected properties, the other part of g that might be
reason for future changes into the disease; αΜ it is the model of the world that interacts with α in order
to extract its significant features (modified after Skowron & Dutta, 2018).
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then set X is exact with respect to B; otherwise, if BNB (X ) is not empty and X is not rough
with respect to B.

A decision table (training sample in ML) for S is the triplet: S = (U, C, D) where: C, D are
condition and decision attributes (Pawlak, 1991). Each row of the decision table gives a
particular rule that connects condition and decision attributes for a single measurement,
RST generalizes these particular rules into universal hypotheses (object or disease
classification).

Dubois and Prade (1990) have generalized RST to FRTS by extending RST indiscernibility
with concepts of tolerance after Zadeh’s membership degrees in fuzzy sets (Zadeh, 2002).

As a consequence, ‘crisp’ dependences were replaced by a fuzzy tolerance or similarity
relations Ra (x, y) as a value between two observations x and y. As Ra (x, y) is a similarity
relation, it must be reflexive, symmetric, and transitive. As summarized in Riza et al.
(2014), there are several tolerance relationships such as the normalized difference (so-
called equation (1)) or Gaussian or exponential differences (Riza et al., 2014). There are
also formulas related to normalized differences between pairs of attributes. The most
common are Łukasiewicz and t.cos t.norm − t (Riza et al., 2014). As decision attributes
are nominative, we used crisp relations between them.

We define B-lower and B-upper approximations for each observation x in FRST as fol-
lowing: B-lower approximation as: (RB � X)(x) = inf

y [U
I(RB(x, y), X(y)) , where I is an implica-

tor (Riza et al., 2014). The B-lower approximation for the observation x is then the set of
observations, which are the most similar to the observation x and it can predict the
decision attribute with the highest confidence, based on conditional attributes B.

The B-upper approximation is defined by (RB � X)(x) = sup
y [U

t(RB(x, y), X(y)), where t is
the t.norm. The B-upper approximation is a set of observations for which the prediction of
decision attribute has the smallest confidence (Riza et al., 2014).

Notice that rules in FRST have dissimilar formation than in RST. They are based on the
tolerance classes and appropriate decision concepts. The fuzzy rule is a triple (B, C, D),
where B is a set of conditional attributes that appear in the rule, C stands for fuzzy toler-
ance class of object, and D stands for decision class of object.

We have used RST algorithms implemented as the RSES 2.2 (logic.mimuw.edu.pl/∼rses/
get.html) Exploration Program Rough System and FRST implemented as Rough Set
package in R (Riza et al., 2014).

2.1. Measured attributes

We have tested two groups of PD patients: the first group (G1) of 23 patients was
measured three times every half of the year (visits were numbered as V1, V2, V3) and
the second group (G2) had more advanced 24 patients and were a reference model of
disease progression in the first group. Both groups of patients were only on medication.
The major medication in this group was L-Dopa that increases the concentration of the
transmitter dopamine in the brain which is lacking in Parkinson’s patients. In most
cases, PD starts with ND in substantia nigra that is responsible for the release of dopamine.

All patients were measured in two sessions: MedOFF (session S#=1 without medication)
and MedON (session S#=2 patients on medications). In addition, all patients have the fol-
lowing procedures: neuropsychological tests: PDQ39 (quality of life), Epworth (sleepiness
test); neurological tests: eye movements and standard PD test: UPDRS (Unified Parkinson’s
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Disease Rating Scale). All tests were performed in Brodno Hospital, Department of Neurol-
ogy, Faculty of Health Science, Medical University Warsaw, Poland. In the present work, we
have tested and measured fast eye movements: reflexive saccades (RS) as described in our
previous publications (Przybyszewski et al., 2016, 2018a). In summary, every subject was
sitting in a stable position without head movements and watching a computer screen
before him/her. At the beginning, he/she has to fixate in the centre of the screen and
to keep on moving light spot. This spot was jumping randomly, 10° to the right or 10°
to the left. The patient has to follow movements of the light spot and the following par-
ameters were measured: latency (RSLat) – time difference between the beginning of the
spot and eyes movements, saccade duration (RSDur), saccade amplitude (RSAmp), and
saccade velocity (RSVel).

2.2. Comparison with different methods

We also wanted to compare our approach with other methods of classifications using the
same data. We developed a classification ranking procedure iterating over different scaling
and classification methods implemented in scikit-learn, which is Python module integrat-
ing classic machine learning algorithms (Pedregosa et al., 2011). We have performed two
types of tests: classification on train test (trainset G2V1, test set G2V1) and using datasets
for which we wanted to check predictions (trainset G2V1, test sets G1V1–3). The purpose of
the comparison was not only to find out the accuracy of classification but also to check
whether the prediction results for individual G1V1–3 test sets would represent a similar
upward trend. The similarity of test set G1–3 to trainset G2V1 should increase with each
subsequent visit number, which should be expressed in the results of classifications.

With discretized data sets, we started to iterate over different pairs of scaling-transform-
ing and classification methods (listed below) trying to estimate and score predictions
finding the best values for the hyper-parameters. For this purpose, we used the Grid-
SearchCV (GSCV), the method implemented in the scikit-learn which exhaustively searches
best values off hyper-parameters using cross-validation. The cross-validation divides the
data set into the number of folds and performs the train-test procedure for each one
with the remaining folds, averaging the evaluation results (Pedregosa et al., 2011).

We used default 5 folds split, because we didn’t see any improvement in the results by
increasing the value of this parameter. For predictions and estimations of the prediction
score, we used cross-validated methods implemented in the scikit-learn (‘cross_val_pre-
dict’, ‘cross_val_score’) (Pedregosa et al., 2011). The ranking method worked according
to the diagram shown in Figure 2.

Different pairs of train and test sets were iterated using combinations of scalers and
classifiers tested after tuning of hyper-parameters. We decided to use scalers because of
the different value scales represented by our features. In the example, UPDRS varies
between 0 (no disability) and possible maximum of 199 points (total disability). In the
PDQ-39 scale, different parts of the survey are grouped into eight scales and scored by
sums of scores in a percentage ranging from 0 and 100. The Epworth scale varies
between 0 and 18. The same for oculometry parameters, the latency have its minimum
around 200, duration around 40, while amplitude varies between 5 and 20. There are
different methods to get all attributes values to into the same scale and we decided to
check the results of the predictions using different scaling approaches:
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. Min–max scaling – where a feature values are shifted and rescaled by subtracting the
minimum and dividing by the difference between maximum and the minimum, so
that they end up ranging from 0 to 1.

. Standard scaling (standardization) – where a feature mean values are subtracted and
divided by the variance, so resulting distribution has unit variance (standard normal dis-
tribution) untied from the predefined range in contrast to the min–max scaling.

. Normalization – where a feature values, by each data unit are scaled independently of
the other to have unit norm.

. Robust scaling – where the feature medians are removed, then centred and scaled
according to the quantile range by computing the relevant statistics on the samples,
which creates distribution that are robust to outliers.

. Power transforming – where a feature values are power transformed to make distri-
bution more like Gaussian by applying zero-mean and unit-variance normalization
and by estimating the optimum values for variance stabilization and minimal skewness
by the maximum likelihood

. Quantile transformation (non-linear) – where a feature values are mapped to uniform
distribution by estimation of the cumulative distribution function and associated
quantile function, spreading out the most frequent values reducing the impact of
outliers.

Figure 2. Schema of classification ranking procedure.
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Each of scalers was tested in pair with one of the classifiers. We list all tested methods
with a short description below:

. Nearest Neighbours (NN) – acts as a uniform interface to three different NN algorithms:
BallTree, KDTree, and Brute-Force, determining the best approach from the training
data by the ‘auto’ mode.

. Decision Tree (DT) – where the classification process is based on learning using simple
if-then-else decision rules inferred from the data features.

. Random Forest (RF) – where the number of randomized decision trees are fit on various
subsamples of the dataset averaging results on the output.

. Support Vector Classification (SVC) – implementation of support vector machines (SVM)
where a subset of training points creates vectors determining the decision boundaries.

. Gaussian Process (GP) – where the classification process is based on the Laplace
approximation.

. Gaussian Naive Bayes (GNB) – where the likelihood of the features is assumed to be
Gaussian.

. Quadratic Discriminant Analysis (QDA) – where the likelihood of the features is deter-
mined by the quadratic plot of decision boundaries (more flexible than the linear plot).

. Bayesian Gaussian Mixture (BGM) – implements variational Bayesian estimation of a
function comprising several Gaussians.

. Stochastic Gradient Descent (SGD) – fits a linear SVM learning with the gradient of the
loss estimated each sample at a time updating the model with a decreasing strength
schedule.

. Gradient Boosting (GB) – builds an additive model where in each stage, trees are fit on
the negative gradient of the deviance loss function.

In order to compare different results, in addition to the Accuracy, we have also used the F1
metrics. The F1 provides a single score that balances in one value two concerns suitable for
classification of imbalanced datasets – precision and recall. Precision is the ratio of cor-
rectly predicted positive examples divided by the total number of positive examples
that were predicted (True Positives/True Positives + False Positives). It quantifies the
number of true positive predictions and, therefore, calculates the accuracy for the minority
class. The recall is the ratio of correctly predicted positive examples made out of all positive
predictions (True Positives/(True Positives + False Negatives)). Unlike precision which
reveals correct positive predictions out of all positive predictions, recall provides a
measure of missed positive predictions. In this way, recall might be understood as a cover-
age of the positive class. Therefore, we define F1 as follows:

F1 = 2∗(Precision∗Recall)/ (Precision+ Recall) (1)

3. Results

For the first group of PD patients, we have performed three tests, every half-year, whereas
for the second group of more advanced PD, we have measured only one time. The mean
age of the first group (G1) was 57.8 ± 13 (SD) years with disease duration 7.1 ± 3.5 years;
UPDRS MedOff/On was 48.3 ± 17.9 and 23.6 ± 10.3 for the first visit (V1); 57.3 ± 16.8 and
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27.8 ± 10.8 for the second visit (V2), and 62.2 ± 18.2 and 25 ± 11.6 for the third visit (V3).
The second group (G2) of patients was more advanced with the mean age 53.7 ± 9.3
years and disease duration 10.25 ± 3.9 years; UPDRS MedOff/On was 62.1 ± 16.1 and
29.9 ± 13.3 measured one time only. Data were placed in four information tables: G1V1,
G1V2, G1V3, and G2V1.

Table 1 has 46 rows: 23 patients measured in two sessions each. Condition attributes
patient number P#, S# session number, t_dur – disease duration, PDQ39, Epworth (as
above), RS parameters (above). The decision attribute is UPDRS that is proportional to
the disease progression; it increases from G1V1 to G1V3 and it will be referred to G2V1.

3.1. Rough set approach

In the next step, Table 1 is discretized by RST and part of the table for G1V1 patients in
Table 2. Notice that some less significant attributes were, by the algorithm of RSES 2.2, dis-
carded: RSDur, RSAmp, and RSVel – duration, amplitude, and velocity of RS.

By means of the discretization RSES software RSES 2.2 (see Methods), UPDRS was
divided into four ranges: ‘(−Inf, 33.5)’, ‘(33.5, 43.0)’, ‘(43.0, 63.0)’, and ‘(63.0, Inf)’. All other
attributes, except symbolic attributes P# (number given to each patient) and S# (session
number) were also discretized (Table 2).

Cross-validation (6-fold) based on the decomposition tree of the first visit G1V1 data
gave the global accuracy 0.896 and global coverage 0.35. Prediction, based on rules
from G1V1, of UPDRS in G1V2 and G1V3 gave global accuracy 0.7 with coverage 1, and
these results do not indicate time-related disease progression.

For G2V1 group, rules from G1V1 gave global accuracy 0.64 and coverage 0.5. However,
it was more interesting to estimate G1V1–G1V3 from the other more advanced model
group of patients G2V1.

This way we can follow our c-granular approach (Figure 1) where the model are gran-
ules of attributes of G2V1 that might predict PD time: G1V1, G1V3, G1V3 development.
With the help of RSES, we have found rules describing relationships between condition
and decision attributes in G2V1 and we are using these rules to predict disease symptoms
in the G1 group for each visit V1, V2, and V3. If the disease progression has direction going
to the model (G2V1) group, then predictions should increase with the time of the disease.
We demonstrate our predictions in Tables 3–5.

In table 3, predictions of the UPDRS for the first visit group of patients (G1V1) are given.
Notice that in this and Tables 4 and 5, we could not predict UPDRS between 33.5 and 43.
The accuracy in Table 3 was <60%, but it increases for each following visit: G1V2 has global

Table 1. Part of the decision table for three G1V1 patients.
P# Ses tdur PDQ39 Epworth RSLat RSDur RSAmp RSVel UPDRS

10 1 5.3 90 17 205 51 9.8 343 58
10 2 5.3 90 17 182 56 10 333 35
11 1 15 122 8 245 55 12 503 57
11 2 15 122 8 266 55 12 431 40
12 1 5.5 20 3 178 54 10 421 25
12 2 5.5 20 3 161 58 13 505 15
13 1 4.8 68 9 299 59 13 472 46
13 2 4.8 68 9 234 57 11 367 26
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accuracy 68% and G1V3 – 86%. Therefore, patients’ symptoms become more similar to the
G2V1 group with time.

An important part in these estimations is to find rules that are enough general to be
patient independent (there are different patients in the G1 and G2 groups) and not too
general in order to find differences between different visits.

There were altogether 71 rules, e.g.

(Ses = 2)& (PDQ39 = ′(-Inf, 50.5)′) = .(UPDRS = ′̂(-Inf, 33.5)′ [10]) (2)

(Ses = 2)& (Epworth = ′(-Inf, 14.0)′)& (RSLat = ′(264.0, Inf)′)
= .(UPDRS = ′(63.0, Inf)′[4])

(3)

(dur = ′(5.65, Inf)′)& (Ses = 2)& (RSLat = ′(-Inf, 264.0)′)
= .(UPDRS = ′(-Inf, 33.5)′[14])

(4)

(Ses = 1)& (PDQ39 = ′(-Inf, 50.5)′)& (RSLat = ′(264.0, Inf)′)
= .(UPDRS = ′(63.0, Inf)′[1])

(5)

Equations (2–4) were for Ses=2 (patient on medication) and they were fulfilled by 10 (2),
4 (3), and 14 (4) cases, whereas equation (5) was for one case only.

We can read Equation (1) as: for patients on medication (Ses=2) and with PDQ39 (quality
of life test result) <50.5 then his/her UPDRS will be <33.5.

3.2. Fuzzy rough set approach

We have obtained our predictions using the generalized fuzzy rough set rules (GFRS) with
aggregation by the t.norm Łukasiewicz, similarity expressed as tolerance equation (3)
(modified Gaussian from Riza et al. (2014)), and implicator – Łukasiewicz; α precision

Table 2. Discretized-table (Table 1) for three G1V1 patients.
P# Ses tdur PDQ39 Epworth RSLat RSDur RSAmp RSVel UPDRS

10 1 ‘(50.5,Inf)’ ‘(−Inf,5.65)’ ‘(14,Inf)’ ‘(−Inf,264)’ * * * ‘(43,63)’
10 2 ‘(−Inf,5.65)’ ‘(50.5,Inf)’ ‘(14,Inf)’ ‘(−Inf,264)’ * * * ‘(33.5,43)’
11 1 ‘(5.65,Inf)’ ‘(50.5,Inf)’ ‘(−Inf,14)’ ‘(−Inf,264)’ * * * ‘(43,63)’
11 2 ‘(5.65,Inf)’ ‘(50.5,Inf)’ ‘(−Inf,14.)’ ‘(264,Inf)’ * * * ‘(33.5,43)’
12 1 ‘(−Inf,5.65)’ ‘(−Inf,50.5)’ ‘(−Inf,14)’ ‘(−Inf,264)’ * * * ‘(−Inf,33.5)’
12 2 ‘(−Inf,5.65)’ ‘(−Inf,50.5)’ ‘(−Inf,14)’ ‘(−Inf,264)’ * * * ‘(−Inf,33.5)’
13 1 ‘(−Inf,5.65)’ ‘(50.5,Inf)’ ‘(−Inf,14.0)’ ‘(264,Inf)’ * * * ‘(43,63)’
13 2 ‘(−Inf,5.65)’ ‘(50.5,Inf)’ ‘(−Inf,14.)’ ‘(−Inf,264)’ * * * ‘(−Inf,33.5)’

Table 3. Confusion matrix for UPDRS of G1V1 patients by rules obtained from G2V1 patients with RST.
Predicted

Actual ‘(63.0, Inf)’ ‘(33.5, 43.0)’ ‘(43.0, 63.0)’ ‘(−Inf, 33.5)’ ACC
‘(63.0, Inf)’ 2.0 0.0 0.0 0.0 1.0
‘(33.5, 43.0)’ 1.0 0.0 1.0 1.0 0.0
‘(43.0, 63.0)’ 6.0 0.0 1.0 0.0 0.14
‘(−Inf, 33.5)’ 3.0 0.0 2.0 17.0 0.77
TPR 0.17 0.0 0.25 0.94

TPR, true positive rates for decision classes; ACC, accuracy for decision classes: the global accuracy was 0.59 and global
coverage was 0.74.
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was 0.05. As the decision attribute must be nominal, we have chosen classes that are
similar to already used in our previous section: ‘(−Inf, 33.5)’ = ‘1’; ‘(33.5, 43.0 ’ =’2’; ‘(43.0,
63.0)’ =’3’,: ‘(63, Inf)’ = ‘4’. The examples of FRST rules are below:

(Ses = 1)& (Epworth = ′16′)& (RSLat = ′192′) = .(UPDRS = ′3′) (6)

(Ses = 2) = .(UPDRS = ′1′) (7)

(Ses = 1)& (Epworth = ′1′)& (RSLat = ′289′) = .(UPDRS = ′4′ ) (8)

We can read Equation (6) as for patients without medication (Ses=1) and with Epworth
(quality of sleep test result) ∼16 and saccade latency about 192 then his/her UPDRS will be
∼3 (between 34 and 63).

FRST rules have some similarities to RST rules, but there are not ‘crisp’, there are fuzzy
and more difficult to interpret as their fuzziness are not given directly because they are
dependent on aggregation, tolerance, and implicator equations. Their advantage to RST
rules is that they cover all cases with the global coverage =1. As described earlier, we
have found FRST rules for our model group of patients G2V1 and applied these rules to
other groups G1V1, G1V2, and G1V3 (Tables 6–8).

Accuracies of our FRST predictions were inferior in comparison to RST predictions, but
as before accuracy was increasing with each visit: G1V1 – accuracy was <40%, for G1V2 –
54%, and for G1V3 visit was >60%. Also, notice that we did not get right predictions for
UPDRS nominal values 2 and 3 that were between (33.5 and 43) and between (43 and
63), but we have got relatively good predictions for classes 1 and 4 where accuracy for
decision classes ACC was almost for all estimations near 1.

Table 4. Confusion matrix for UPDRS of G1V2 patients by rules obtained from G2V1 patients with RST.
Predicted

actual ‘(63.0, Inf)’ ‘(33.5, 43.0)’ ‘(43.0, 63.0)’ ‘(−Inf, 33.5)’ ACC

‘(63.0, Inf)’ 3.0 0.0 1.0 0.0 0.75
‘(33.5, 43.0)’ 0.0 0.0 2.0 1.0 0.0
‘(43.0, 63.0)’ 4.0 0.0 0.0 0.0 0.0
‘(−Inf, 33.5)’ 0.0 0.0 1.0 16.0 0.94
TPR 0.43 0.0 0.0 0.94

TPR, true positive rates for decision classes; ACC, accuracy for decision classes: the global accuracy was 0.68 and global
coverage was 0.61.

Table 5. Confusion matrix for UPDRS of G1V3 patients by rules obtained from G2V1 patients with RST.
Predicted

Actual ‘(63.0, Inf)’ ‘(33.5, 43.0)’ ‘(43.0, 63.0)’ ‘(−Inf, 33.5)’ ACC

‘(63.0, Inf)’ 3.0 0.0 0.0 0.0 1.0
‘(33.5, 43.0)’ 0.0 0.0 1.0 2.0 0.0
‘(43.0, 63.0)’ 0.0 0.0 0.0 0.0 0.0
‘(−Inf, 33.5)’ 0.0 0.0 2.0 16.0 0.94
TPR 1.0 0.0 0.0 1.0

TPR, true positive rates for decision classes; ACC, accuracy for decision classes: the global accuracy was 0.86 and global
coverage was 0.48.
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3.3. Results comparison with different AI methods

Our additional purpose was to compare our results with different methods of classifi-
cations using the same, initial dataset. To achieve it, we have discretized G2V1 and
G1V1–3 in the same way as described above, in Section 3.1. At first, we have evaluated
data sets without division into different sessions. Our results were quite good (Accuracy:
G1V1 = 0.70, G1V2 = 0.75, G1V3 = 0.71, F1:G1V1 = 0.72, G1V2 = 0.74, G1V3 = 0.72);
however, they did not show the previously found upward trend, although the results of
UPDRS patients had this trend. Our results on classification self-test (G2V1 as train and
test dataset) were always much worst and stayed mostly <0.70. Finally, we executed our
ranking procedure on data sets divided into different sessions.

Table 9 presents results obtained for Session 1. The new results have reflected the
upward trend; however, it seems that their accuracy values were different from that
obtained with RSES (G1V1 = 0.59, G1V2 = 0.68, G1V3 = 0.86) where we can see a large accu-
racy shift between visits 2 and 3. They seem to be more balanced. Unfortunately, for the
second session, the classification didn’t perform the same way and most of the best results
were overfitted. Table 10 presents the results obtained for the second session. The solution

Table 7. Confusion matrix for UPDRS of G1V1 patients by rules obtained from G2V1 patients with FRST.
Predicted

Actual ‘1’ ‘2’ ‘3’ ‘4’ ACC

‘1’ 18 0 0 0 1.0
‘2’ 4 0 0 2 0.0
‘3’ 2 0 0 13 0.0
‘4’ 0 0 0 7 1.0
TPR 0.75 0.0 0.0 0.32

TPR, true positive rates for decision classes; ACC, accuracy for decision classes: the global accuracy was 0.54 and global
coverage was 1.

Table 6. Confusion matrix for UPDRS of G1V1 patients by rules obtained from G2V1 patients with FRST.
Predicted

Actual ‘1’ ‘2’ ‘3’ ‘4’ ACC

‘1’ 19 0 0 5 0.79
‘2’ 2 0 0 4 0.0
‘3’ 2 0 0 11 0.0
‘4’ 0 0 0 3 1.0
TPR 0.826 0.0 0.0 0.13

TPR, true positive rates for decision classes; ACC, accuracy for decision classes: the global accuracy was 0.38 and global
coverage was 1.

Table 8. Confusion matrix for UPDRS of G1V3 patients by rules obtained from G2V1 patients with FRST
Predicted

Actual ‘1’ ‘2’ ‘3’ ‘4’ ACC

‘1’ 17 0 0 0 1.0
‘2’ 5 0 0 3 0.0
1 2 0 0 8 0.0
‘4’ 0 0 0 11 1.0
TPR 0.74 0.0 0.0 0.5

TPR, true positive rates for decision classes; ACC, accuracy for decision classes: the global accuracy was 0.54 and global
coverage was 1.
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to the overfitting problem could be in additional pre-processing techniques, i.e. in over-
sampling, which would offset the effects of uneven samples. However, the purpose was
to compare different methods using the same initial data input and here RSES performs
much better with differences in the number of class representations. Results of our
earlier experiments showed that RSES is much better than other data sets in dealing
with predicates based on a small number of samples, which may be the reason for its
results (Śledzianowski et al., 2018).

4. Discussions

In the first part of our work, we have used c-granular computing to estimate disease pro-
gression in time (longitudinal study) of patients with PD. As in each individual, PD symp-
toms and their developments are different (No two people face Parkinson’s in quite the
same way), we would like to know if we could predict a particular patient progression
by looking to more advanced group of patients.

We have used GrC with RST and FRST. RST looks into ‘crisp’ granules and estimates
objects by upper and lower approximations that determine the precision of the descrip-
tion as dependent from properties of granules. Therefore, RST can give very precise esti-
mation but not for all objects (measures). That can be seen in our results where we can
precisely predict symptoms (measured as UPDRS) of patients, but not all of them
(global coverage <1). If we make our granules fuzzy (not crisp), they can describe proper-
ties of all objects (measures) with global coverage =1, but less precisely. Our present
results might be a good example of these differences and comparison with the statistical
data (Szlufik et al., 2019).

In the second part, we have compared the GrC approach with the scikit-learn methods.
It has revealed a problem in the inability to classify data of the second session without the
overfitting. One possible reason might be the differences between the sizes of patient
groups. In data sets, both session groups were almost equal in size, but varied in
numbers of objects in different UPDRS classes. We find out that as the main source for
overfitting, as for the second session, the lowest UPDRS class (≤33.5) were

Table 9. Classification results: trainset = G2V1, test set = G1V1–3, Session 1.
G1V1 G1V2 G1V3

Accuracy 0.59 0.73 0.78

Best classification method: Random Forest Robust Scaler SGD Classifier
Quantile Transformer

Nearest Neighbours
Min–Max Scaler

F1 0.57 0.70 0.78
Best classification method: SGD Classifier Standard Scaler SVC Standard Scaler Extra Trees Normalizer

Table 10. Classification results: trainset = G2V1, test set = G1V1–3, Session 2.
G1V1 G1V2 G1V3

Accuracy 1.00 0.87 0.87
Best classification
method

Decision Tree Standard
Scaler

SGD Classifier Standard
Scaler

Random Forest Min–Max
Scaler

F1 1.00 0.83 0.86
Best classification
method

Decision Tree Standard
Scaler

SGD Classifier Standard
Scaler

Random Forest Robust Scaler
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overrepresented and contained ∼70% of all samples. In contrast, the largest UPDRS group
in data sets of session 1 was never larger than ∼50%, which could explain its healthier
results. This effect can be seen especially for dataset G1V1 session 2; however, for the
two remaining data sets, results in F1 metrics (which is more suitable for data sets imbal-
anced in class numbers) look similar to the expected results for last two visits. The results
increased from 83% to 86% giving the same final result (last visit) as when using the c-
granule approach. This prompts us to conclude that the GrC/RST/FRST is just better
than other tested methods at deducing results for unequal groups of observations and
also for small groups in numbers. Classifications using c-granule in such cases allow us
to get around the oversampling, which sometimes can have a bad effect on the authen-
ticity of the results, as it creates synthetic observations based only on similarities to known
representations.

Another important property of c-granule approach is similarities between findings all-
important aspects (symptoms) of the disease and recognition of the complex object
(Figure 1). In the visual brain, we are trying to infer not clear visible object’s properties
from attributes we have classified from α to β and back to a new part (q) of the object
(Figure 1). However, there is a very important neurological principle of our vision – the
Model (Przybyszewski, 2008, 2019). It consists what we have learned from the world, all
particular environments, and known objects. We are able to precisely classify a complex,
unknown object as we are tuning and comparing it particular attributes in many
different levels (and even with different logics (Pawlak, 1991)). The model is an important
part of our approach.

Our model is determined by attributes of the more advanced group of PD patients (in
our case, G2V1 group). As it is illustrated in Figure 3, granules describing different disease
stages might develop or stay constant. Blobs represent symptoms of all our patients who
are at the actual disease stage. They all together represent c-granule of all patients (top of
the figure). Disease development is related to the changes in the size of different blobs and
also relationships (interactions) between symptoms, which is represented as the change of
the granule shape (lower part of the figure). In each disease stage, we are comparing actual
symptoms with the model and look for the similarities. We have demonstrated on a group
of over 20 patients that even if each one has different symptoms, their path (c-granule) is
going in the direction to our model. Changing treatment, it might push patient symptoms
to the different path. In order to test such options, we need several models and to measure
how to change the treatment to direct patients to a different model. By testing several
different patients’ groups, we have demonstrated that the certain long-lasting treatments
can change disease develop to new directions that are not similar to classical medication
treatments (Przybyszewski et al., 2018b). In such cases, one possible solution is to increase
the number of granules (dimension of attributes) but adding new attributes that might
‘sense’ new direction of the disease development. We are actually testing the influence
of the depression on the direction of the symptoms changes, as depression is character-
istic not only for PD but also for more common Alzheimer’s disease (AD) where late (after
65 years of age) onset AD (LOAD) is in 50% related to depression.

In summary, we have demonstrated that by using an approach similar to the visual brain
intelligence might give us a new way of looking into similarities between different groups
of patients. In addition, we might see longitudinal studies as c-granules and measure
symptoms by distance to the Model (advance stage of the disease).
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A part of this study was published earlier (Przybyszewski, 2019) and it has discussed
during International Conference on Computational Collective Intelligence 4–6 September
in Henday, France. We have extended previous communication by several different data
mining methods and compared their results: added to the Abstract, to the Methods
section as paragraph 2.2, added to the Results section as paragraph 3.3 as well we have
added another paragraph to the Discussions section.
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