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Abstract. A popular view is that the brain works in a similar way to
a digital computer or a Universal Turing Machine by processing sym-
bols. Psychophysical experiments and our amazing capability to recog-
nize complex objects (like faces) in different light and context conditions
argue against symbolic representation and suggest that concept represen-
tation related to similarities may be a more appropriate model of brain
function. In present work, by looking into anatomical and neurophysio-
logical basis of how we classify objects shapes, we propose to describe
computational properties of the brain by rough set theory (Pawlak, 1992
[1]). Concepts representing objects physical properties in variable envi-
ronment are weak (not precise), but psychophysical space shows precise
object categorizations. We estimate brain expertise in classifications of
the object’s components by analyzing single cell responses in the area
responsible for simple shape recognition ([2]). Our model is based on the
receptive field properties of neurons in different visual areas: thalamus,
V1 and V4 and on feedforward (FF) and feedback (FB) interactions
between them. The FF pathways combine properties extracted in each
area into a vast number of hypothetical objects by using “driver logi-
cal rules”, in contrast to “modulator logical rules” of the FB pathways.
The FB pathways function may help to change weak concepts of objects
physical properties into their crisp classification in psychophysical space.

Keywords: imprecise computation, bottom-up, top-down processes,
neuronal activity.

1 Introduction

Humans can effortlessly recognize objects as complex as faces even if they have
never seen them in a particular context before. We are perceptually insensitive
to the exact properties of an objects part, but the same parts in different con-
figurations or contexts may result in opposite effects, much like the Thatcher
effect. Psychophysical experiments related to complex object and faces catego-
rization show that object recognition is based on incomplete information about
an objects parts.
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One of the most popular models based on psychophysical experiments is the
geon model related to the Recognition-by-components (RBC) theory [3]. A geon
can be structurally described (GSD) as a two-dimensional representation of an
arrangement of parts, each specified in terms of its non-accidental characteriza-
tion and the relations amongst these parts [3]. Across objects, the parts (geons,
or geometric icons) can differ in their nonaccidental properties (NAP). NAP are
properties that do not change with small depth rotations of an object. The pres-
ence or absence of NAP of some geons or the different relations between them
is the basis for discrimination of viewpoint invariant objects [3]. Consequently,
complex objects can be described by a simple “alphabet” by utilizing a small
set of structural primitive geons. However, RBC theory not only does not at-
tempt to describe a complex, real scene by an alphabet of geons, but it is also
incomplete, failing to distinguish many real objects.

Such experiments suggest that in every day life we not only perform object
classifications based solely on partial information about an object, but that we
also make accessible information about variations in that object’s parts, such
as its rotation or our viewpoint, indiscernible. An exact, crisp description (a
set of values) of all the attributes of an object is therefore not only impossible
because of the limitations of our visual system (such as a small area of sharp
image, short perception time associated with the eye fixation period (see below),
etc.), but also because we would like to identify the same object under different
light conditions, contexts, localizations, rotations, etc. These difficulties in the
context of our amazing capabilities in face and facial expression recognition led
us (Prof. Zdzislaw Pawlak, Prof. Lech Polkowski, Prof. Andrzej Skowron, and
myself) to discuss the application of rough set theory in order to find logical
rules for complex object categorizations (the face project). Below I will present
my summary regarding several points of our discussion.

As mentioned above, psychophysical and neurophysiological limitations led
us to conclude that the brain-as-an-expert in complex object recognition may
use vague concepts to process approximate information about a perceived ob-
ject. Pawlak [1] proposed characterizing these concepts by their upper and lower
approximations. The difference between the upper and lower approximations of
a set of objects with related attributes is called its boundary region. Using the
above characterizations, the concept of vagueness can be precisely expressed by
the boundary region of a set. If a boundary region of a set is empty, the upper
and lower approximations of the set are equal and the set is crisp (classical set
theory). In this case, we can clearly classify the object on the basis of its prop-
erties as recognizable (a member of the set; logical value=1) or not recognizable
(not a member of the set; logical value=0).

Crisp set also represents the classical approach to psychophysical experiments
where near the limit of our vision, a subject can sometimes see the object and
sometimes cannot. On the basis of averaging experimental results, we say that if
the chance of seeing the object is over 50 % then the object is visible, and if it is
below 50 %, then the object is not visible. The spectrum of an objects visibility
is reduced to two values of a logical state: visible or not visible.
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If the boundary region of a set is not empty, however, the set is rough and
one can estimate the degree to which an object belongs to a set, or in other
words, the precision with which the object is recognized. I claim that there
are neurophysiological mechanisms in the brain responsible for shrinking the
boundary regions along different dimensions in various visual areas of the brain.
I describe these mechanisms with an example of the hierarchical structure: from
the thalamus to area V4, the part of visual system responsible for simple shape
discrimination. The thalamus classification characterizes an object by parts and
questions how accurate divisions are using the rough inclusion relation or the
rule that determines whether points are part of an object (Lesniewski mereol-
ogy). For example, in order to find an object’s contours, the surround portion of
the LGNs receptive field should be outside of the object (see below for a more
detailed analysis). In other visual areas such as V1, objects are partly described
by oriented lines. More detailed measurements (see below) of area V1 receptive
fields show many deviations from their sensitivity to only a single oriented edge.
Their size for example, increases when light intensity decreases and it also de-
pends on the mapping stimulus (i.e. dots vs. grating). Area V4 classifies objects
to an extent as simple shapes coded in its neurons. For example, the mean size
of the receptive field in area V4 is about 6 deg that means that there is partial
overlap between an objects size and a single cell receptive field (RF) in area V4.
Therefore, the relationship between object and receptive field in most situations
is not crisp.

The famous mathematician Lukasiewicz’s once asked whether or not it was
true that “Jan will be in Warsaw next year?” This question initiated a course
of research related to uncertainty using multi-valued logic. The activities of our
sensory and motor systems are also related to uncertainty. In sensory-related
motion, our eyes are constantly moving, with brief periods of fixation during
which reliable information about interesting objects must be obtained and de-
pending on the information received, a decision about the next eye movement
must be made. The brain is continually verifying sensory information with pre-
dictions that are related to assumptions about the environment and possible
object properties. Similarly, in a constantly changing environment, the brain
has to make calculations and predictions with regards to behavior about how
to meet or catch an object with uncertain properties and movement trajecto-
ries. These predictions are verified and corrected during each movement. We can
therefore paraphrase Lukasiewicz’s sentence in relation to subconsciously-made
brain decisions as: “If I move my eyes to the right in the next 100 ms, will I
know that it is Jan’s face?” or “If I correct my hand trajectory in the next 50
ms will I catch the ball?”

The main purpose of this paper is to relate anatomical and neurophysio-
logical brain properties to object categorization. In order to quantify the neu-
rophysiological data and model perception, we will use rough set theory [1].
The complexity of the brain and many different methods of measurement gen-
erated huge amounts of data that led to unclear and contradictory theories.
This work therefore compares data from the literature with data from our
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electrophysiological experiments using rough set theory and multi-valued logic.
Using these precise descriptions, we would like to find closer connections between
the electrophysiological and AI (expert) systems, as well as describe our results
using psychological language.

Like Pawlak [1], we define an information system as S = (U, A), where U is
a set of objects and A is set of attributes. If a ∈ A, u ∈ U the value a(u) is
a unique element of Va (a value set of the attribute a). In agreement with the
Leibniz principle we assume that objects are completely determined by their set
of properties, meaning that attributes map objects to a set of attributes values.
The indiscernibility relation of any subset B of A, or IND(B), is defined [1] as
the equivalence relation whose elements are the sets u : b(u) = v as v varies in
Vb, and [u]B - the equivalence class of u form B-elementary granule. The concept
X ⊆ U is B-definable if for each u ∈ U either [u]B ⊆ X or [u]B ⊆ U −X . B

¯
X =

{u ∈ U : [u]B ⊆ X} is a lower approximation of X . The concept X ⊆ U is B-
indefinable if exists such u ∈ U that [u]B ∩X �= ∅. B̄X = {u ∈ U : [u]B ∩X �= ∅}
is an upper approximation of X . The set BNB(X) = B̄X − B

¯
X will be referred

to as the B-boundary region of X . If the boundary region of X is the empty set
then X is exact (crisp) with respect to B; otherwise if BNB(X) �= ∅ X is not
exact (rough) with respect to B.

In this paper, the universe U is a set of simple visual patterns that we used in
our experiments [2, 4, 5], and which can be divided into equivalent indiscernibility
classes related to their physically measured, computer generated attributes or
B-elementary granules, where B ⊆ A.

The purpose of our research is to find how these objects are classified in the
brain. We will therefore modify, after [1], the definition of the information system
as S = (U, C, D) where C and D are condition and decision attributes respec-
tively. Decision attributes will classify elementary granules in accordance with
neurological responses from a specific area of the visual brain. From a cogni-
tive perspective, the percept of the object is classified into different categories
in different visual areas, leading to different decisions (actions). The informa-
tion system is equivalent to the decision table in which each object u ∈ U is
characterized by a series of the condition attributes and one decision attribute.
The information system can be also seen as agents’ intelligence where condition
attributes described agents’ percepts and decision attributes are related to the
agents’ action [6].

This work investigates the responses of cells in the thalamus that will di-
vide all equivalent pattern classes into LGN-elementary granules [u]LGN , as
well as the responses of cells in area V1 that will divide all patterns into V1-
elementary granules [u]V 1, and the responses of cells in area V4 that will di-
vide all patterns into V4-elementary granules [u]V 4. All neurons in these areas
are sensitive to certain attributes of the stimulus, such as space localization,
but each area also performs distinct pattern classification. In consequence, one
B-elementary granule will be classified in many different ways by neurons in
different areas. All these granules: [u]LGN , [u]V 1, [u]V 4 are exact. They cover
the visual field in a unique way for a fixed eye position, even if the receptive
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fields of different cells overlap. Relationships between granules from different ar-
eas are rough, however, meaning that granules containing information related
to feedforward connections [u]LGN ⊆ [u]V 1 ⊆ [u]V 4 and to feedback pathways:
[u]V 4 ⊆ Us∈S [u]sV 1 ⊆ Us∈S [u]sLGN are rough inclusions, where Us∈S is mereo-
logical sum of all granules covering area of the the V4 neuron. As we will show
below, each pathway obeys different logical rules. Our hypothesis is that the
brain uses a hierarchical multi-level classification in order to find different im-
portant invariances at each level. These invariances may help to classify different
presentations of the same object that, in different conditions, may lack or show
changes in some of its parts.

Our model describes neurophysiological data in rough set theory [1] language
and suggests that in order to classify complex objects the brain uses multi-valued
logic, granular knowledge and rough mereology.

2 Basic Concepts

2.1 Objects’ (stimuli) Attributes and Classification of the Brain
Responses

We will represent our experimental data [2] in the following tables (Tabs. 1-5).
In the first column are neural measurements. Neurons are identified using num-
bers related to a collection of figures in [2] concatenated with the cell number.
Additional letters (a, b, ...) denotes different measurements of the same cell. For
example, 11a denotes the first measurement of a neuron numbered 1 Fig. 1, 11b
the second measurement, etc. Simple stimuli properties are as characterized as
follows: Most of our analysis will be related to data from Pollen et al. [2].

1. Orientation in degrees appears in the column labeled o, and orientation
bandwidth is ob.

2. spatial frequency is denoted as sf , spatial frequency bandwidth is sfb
3. x-axis position is denoted by xp and the range of x-positions is xpr
4. y-axis position is denoted by yp and the range of y-positions is ypr
5. x-axis stimulus size is denoted by xs
6. y-axis stimulus size is denoted by ys
7. stimulus shape is denoted by s, values of s are following: for grating s = 1,

for vertical bar s = 2, for horizontal bar s = 3, for disc s = 4, for annulus
s = 5, for two stimuli s = 22 - two vertical bars, etc.

Stimulus attributes can be express as:

B = {o, ob, sf, sfb, xp, xpr, yp, ypr, xs, ys, s}.
Generally, we divide all cell responses into n ranges, but in this paper, for sim-

plicity, we use three ranges of the neural responses. Activity below the threshold
in between 10 and 20 spikes/s is defined as a category 0 cell response. Activity
above the threshold is defined as category 1, and activity above 30 - 40 spikes/s
as category 2. We analyze only the dominant component of the cell response,
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which in LGN and simple V1 cells is linear (the first harmonic F1) and in the
complex V1 cell and in V4 cell is nonlinear (related to F0 or the mean changes
in the neuronal discharges). The reason for choosing the minimum significant
cell activity of 10 - 20 spikes/s is as follows: during normal activity our eyes
are constantly moving. The fixation periods are between 100 and 300ms, similar
to those of monkeys. Assuming that a single neuron, in order to give reliable
information about an object, must fire a minimum of 2-3 spikes during the eye
fixation period, we obtain a minimum frequency of 10 to 20 spikes/s. We assume
that these discharges are determined by the bottom-up information (hypothesis
testing) and that they are related to the sensory information about an object’s
form. The brain is constantly making predictions, which are verified by com-
paring them with sensory information. These tests are performed in a positive
feedback loop [4, 7]. If prediction is in agreement with the hypothesis, we as-
sume that activity of the cell increases approximately twofold similarly to the
strength of the feedback from V1 to LGN [4]. This increased activity is related
to category 2. Cell responses (r) are divided into 3 ranges:

category 0: activity below the threshold 10 - 20 sp/s labeled by r0;
category 1: activity above the threshold labeled by r1;
category 2: activity above 30 - 40sp/s labeled by r2.

2.2 Logic of the Anatomical Connections

As it was mentioned above, our model consists of three interconnected visual
areas. Their connections can be divided into feedforward (FF) and feedback (FB)
pathways. We have proposed [7] that the role of the FF pathways is to test the
hypothesis about stimulus attributes and the function of the FB pathways is to
make predictions. Below, we suggest that the different anatomical properties of
the FB and FF pathways may determine their different logical rules. We define
LGNi, as LGN i-cell attributes for cells i = 1, . . . , n, V 1j as primary visual
cortex j-cell attributes for cells j = 1, . . . , m, and V 4k as area V4 attributes for
cells k = 1, . . . , l. The specific stimulus attributes for a single cell can be found
in the neurophysiological experiment by recording cell responses to the set of
various test stimuli. As we have mentioned above, cell responses are divided
into several (here 3) ranges, which will define several granules for each cell.
It is different from the classical receptive field definition, which assumes that
the cell responds (logical value 1) or does not respond (logical value 0) to the
stimulus with certain attributes. In the classical electrophysiological approach
all receptive field granules are crisp. In our approach, cell responses below the
threshold (r0), have logical value 0, whereas the maximum cell responses (r2),
have a logical value 1. We will introduce cell responses between r0 and r2, in
this paper there is only one value, r1. The physiological interpretation of cell
responses between the threshold and the maximum response may be related to
the influence of the feedback or horizontal pathways. We assume that the tuning
of each structure is different and we will look for decision rules in each level that
give responses r1 and r2. For example, we assume that r1 means that the local
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structure is tuned to the attributes of the stimulus and such granule for j cell in
area V1 will be define as [u]1V 1j .

Decision Rules for a single neuron. Each neuron in the central nervous sys-
tem sums up its synaptic inputs as a postsynaptic excitatory (EPSPs) and/or
inhibitory (IPSPs) potentials that may cause its membrane potential to exceed
the threshold and to generate an action potential. A single neuron approximates
collective (thousands of interacting synapses with different weights) input infor-
mation to the distributive one (unique decision in a single output). In principle,
a single spike (action potential) can be seen as a decision of the neuron, but
in this work we will not take into account internal dynamics of the system and
therefore we will estimate neuronal activity as spikes mean frequency (as de-
scribed above). This complex synaptic potential summation process is related
in sensory (here only visual) systems with the receptive field properties of each
neuron. Below we will show how neurons in different parts of the brain change
visual information in their receptive fields into decisions.

Decision Rules for LGN. Each LGN cell is sensitive to luminance changes in
a small part of the visual field called the receptive field (RF). The cells in the
LGN have the concentric center-surround shapes of their RFs, which are similar
to that in the retinal ganglion cells [8]. We will consider only on- and off type
RFs. The on - (off) type cells increase (decrease) their activity by an increase
of the light luminance in their receptive field center and/or decrease of the light
luminance in the RF surround (Fig. 1). Below are examples of the decision rules
for on-, and off-type LGN cells with their RF positions: xp0, yp0. We assume
that there is no positive feedback from higher areas therefore their maximum
responses are r1.

DR LGN 1:
xp0 ∧ yp0 ∧ xs0.1 ∧ ys0.1 ∧ s4 → r1 (1)

DR LGN 2:
xp0 ∧ yp0 ∧ xs0.3 ∧ ys0.3 ∧ s5 → r1 (2)

which we interpret that the changes in the luminance of the light spot s4 that
covers the RF center (the first rule) or annulus s5 that covers the RF surround
(the second rule) gives neuronal response r1. We assume that other stimulus
parameters like contrast, speed and frequency of luminance changes, etc. are
constant and optimal, and that the cell is linear and therefore we measure re-
sponse of the cell activity synchronized with the stimulus changes (the first
harmonic). Depending on the cell type the phase shift between stimulus and
the response is near 0 or 180deg if we do not take into account the phase shift
related to the response delay. Instead, using light spots or annuli one can use a
single, modulated with the drifting grating, circular patch covering the classical
RF. By changing the spatial frequency of the drifting grating one can stimulate
only the RF center for high spatial frequencies or center and surround for lower
spatial frequencies, which gives the following decision rule:
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DR LGN 3:
xp0 ∧ yp0 ∧ xs0.3 ∧ ys0.3 ∧ sf0.4 → r1 (3)

where for example: sf = 0.4c/d stimulates RF center and surround, sf ≥ 1c/d
stimulates RF center only. Notice that in agreement with the above rules eqs.
(1-3) LGN cells do not differentiate between light spot, light annulus, and patch
modulated with grating. All these different objects represent the same LGN-
elementary granule.

Decision Rules for area V1. In the primary visual cortex (area V1) neurons
obtain a new property: sensitivity to the stimulus orientation, which is not ob-
served in lower areas: retina or LGN [9]. The area V1 has at least two different
cell types: simple and complex. They can be characterized by spatial relation-
ships between their incremental (on) and decremental (off) subfields. In a simple
cell on and off subfields are seperated, whereas a complex cell is characterized
by the overlap of its subfields. In consequence simple cells are linear (the first
harmonic dominates in their responses: F1/F0 > 1), whereas complex cells are
nonlinear (F1/F0 < 1). The classical V1 RF properties can be found using small
flashing light spots, moving white or dark bars or gratings. We will give an ex-
ample of the decision rules for the RF mapped with the moving white and dark
bars [5]. A moving white bar gives the following decision rule:

DR V1 1:
xpi ∧ yp0 ∧ xsk ∧ ys1 ∧ s2 → r1 (4)

The decision rule for a moving dark bar is given as:

DR V1 2:
xpj ∧ yp0 ∧ xsl ∧ ys1 ∧ s2 → r1 (5)

where xpi is the x-position of the incremental subfield, where xpj is the x-position
of the decremental subfield, yp0 is the y-position of the both subfields, xsk, xsl,
ys1 are horizontal and vertical sizes of the RF subfields, and s2 is a vertical bar
which means that this cell is tuned to the vertical orientation. We have skipped
other stimulus attributes like movement velocity, direction, amplitude, etc. For
simplicity we assume that the cell is not direction sensitive, it gives the same
responses to both direction of bar movement and to the dark and light bars and
that cell responses are symmetric around the x middle position (xp). An overlap
index [10] is defined as:

OI =
0.5(xsk + xsl) − |xpi − xpj |
0.5(xsk + xsl) + |xpi − xpj |

OI compares sizes of increment (xsk) and decrement (xsl) subfields to their
separation (|xpi − xpj |). After [11], if OI ≤ 0.3 (“non-overlapping” subfields)
it is the simple cell with dominating first harmonic response (linear) and r1 is
the amplitude of the first harmonic. If OI ≥ 0.5 (overlapping subfields), it is
the complex cell with dominating F0 response (nonlinear) and r1 are changes
in the mean cell activity. Hubel and Wiesel [9] have proposed that the complex
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cell RF is created by convergence of several simple cells in a similar way like
V1 RF properties are related to RF of LGN cells (Fig. 1). However, there is
recent experimental evidence that the nonlinearity of the complex cell RF may
be related to the feedback or horizontal connections [12].

Decision Rules for area V4. The properties of the RFs in area V4 are more
complex than that in area V1 or in the LGN and in most cases they are nonlinear.
It is not clear what exactly optimal stimuli for cells in V4 are, but a popular
hypothesis states that the V4 cells code the simple, robust shapes. Below there
is an example from [13] of the decision rules for a narrow (0.4 deg) and long (4
deg) horizontal or vertical bars placed in different positions of area V4 RF:

DR V4 1:
o0 ∧ yprm ∧ (yp−2.2 ∨ yp0.15) ∧ xs4 ∧ ys0.4 → r2 (6)

DR V4 2:

o90 ∧ xprm ∧ (xp−0.6 ∨ xp1.3) ∧ xs0.4 ∧ ys4 → r1 (7)

The first rule relates area V4 cell responses to a moving horizontal bar (o0) and
the stimulus in the second rule is a moving vertical bar (o90), yprm, xprm have
meaning of the tolerance for the y or x bar positions (more details in the Re-
sult section). The horizontal bar placed narrowly in two different y-positions
(yp−2.2, yp0.15) gives strong cell responses (DR V4 1), and the vertical bar
placed with wide range in two different x-positions (xp−0.6, xp1.3) gives medium
cell responses.

Decision Rules for feedforward connections from LGN → V1. Tha-
lamic axons target specific cells in layers 4 and 6 of the primary visual cortex
(V1). Generally we assume that there is a linear summation of LGN cells (ap-
proximately 10 − 100 of them [14]) to one V1 cell. It was proposed [9] that the
LGN cells determine the orientation of the V1 cell in the following way: LGN
cells which have a direct synaptic connection to V1 neurons have their receptive
fields arranged along a straight line on the retina (Fig. 1). In this Hubel and
Wiesel [9] classical model the major assumption is that activity of all (four in
Fig. 1) LGN cells is necessary for a V1 cell to be sensitive to the specific stimulus
(oriented light bar). This principle determines syntax of the LGN to V1 decision
rule, by using logical and meaning that if one LGN cell does not respond then
there is no V1 cell response. After Sherman and Guillery [15] we will call such
inputs drivers. Alonso et al. [14] showed that there is a high specificity between
RF properties of the LGN cells which have monosynaptic connections to a V1
simple cell. This precision goes beyond simple retinotopy and includes such RF
properties as RF sign, timing, subregion strength and sign [14]. The decision
rule for the feedforward LGN to V1 connections are following:

DR LGN V1 1:

rLGN
1 (xi, yi) ∧ rLGN

1 (xi+1, yi) ∧ . . . ∧ rLGN
1 (xi+n, yi) → rV 1

1 (8)
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Fig. 1. On the left: modified schematic of the model proposed by [9]. Four LGN cells
with circular receptive fields arranged along a straight line on the retina have direct
synaptic connection to V1 neuron. This V1 neuron is orientation sensitive as marked
by the thick, interrupted lines. On the right: receptive fields of two types of LGN cells,
and two types of area V1 cells.

DR LGN V1 2:

rLGN
1 (xi, yi) ∧ rLGN

1 (xi+1, yi+1) ∧ . . . ∧ rLGN
1 (xi+n, yi+1) → rV 1

1 (9)

where the first rule determines response of cells in V1 with optimal horizontal
orientation, and the second rule says that the optimal orientation is 45 degrees;
(xi, yi) is the localization of the RF in x-y Euclidian coordinates of the visual
field. Notice that these rules assume that V1 RF is completely determined by
the FF pathway from the LGN.

Decision Rules for feedback connections from V1→LGN. There are
several papers showing the existence of the feedback connections from V1 to
LGN [16-20]. In [20], authors have quantitatively compared the visuotopic extent
of geniculate feedforward afferents to V1 with the size of the RF center and
surround of neurons in V1 input layers and the visuotopic extent of V1 feedback
connections to the LGN with the RF size of cells in V1. Area V1 feedback
connections restrict their influence to LGN regions visuotopically coextensive
with the size of the classical RF of V1 layer 6 cells and commensurate with the
LGN region from which they receive feedforward connections. In agreement with
[15] we will denote feedback inputs modulators with following decision rules:
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DR V1 LGN 1:

(rV 1
1 ∨ rLGN

1 (xi, yi)), (rV 1
1 ∨ rLGN

1 (xi, yi+1), (rV 1
1 ∨ rLGN

1 (xi+1, yi+1)), . . .

. . . , rLGN
1 (xi+2n, yi+2n)) → rLGN

2 (10)

This rule says that when the activity of a particular V1 cell is in agreement
with activity in some LGN cells their responses increase from r1 to r2, and
rLGN
1 (xi, yi) means r1 response of LGN cell with coordination (xi, yi) in the

visual field, and rLGN
2 means r2 response of all LGN cells in the decision rules

which activity was coincidental with the feedback excitation, it is a pattern of
LGN cells activity.

Decision Rules for feedforward connections V1 → V4. There are rel-
atively small direct connections from V1 to V4 bypassing area V2 [20], but we
also must take into account V1 to V2 [21] and V2 to V4 connections, which are
highly organized but variable, especially in V4 [22] feedforward connections. We
simplify that V2 has similar properties to V1 but have a larger size of the RF.
We assume that, like from the retina to LGN and from LGN to V1 direct or
indirect connections from V1 to V4 provide driver input and fulfill the following
decision rules:

DR V1 V4 1:

rV 1
1 (xi, yi) ∧ rV 1

1 (xi+1, yi) ∧ . . . ∧ rV 1
1 (xi+n, yi) → rV 4

1 (11)

DR V1 V4 2:

rV 1
1 (xi, yi) ∧ rV 1

1 (xi+1, yi+j) ∧ . . . ∧ rV 1
1 (xi+n, yi+m) → rV 4

1 (12)

We assume that, the RF in area V4 sums up driver inputs from regions in
the areas V1and V2 of cells with highly specific RF properties, not only retino-
topically correlated.

Decision Rules for feedback connections from V4→V1. Anterograde
anatomical tracing [23] has shown axons backprojecting from area V4 directly
to area V1 or sometimes with branches in area V2. Axons of V4 cells span in
area V1 in large territories with most terminations in layer 1, which can be ei-
ther distinct clusters or in linear arrays. These specific for each axon branches
determine decision rules that will have similar syntax (see below) but anatom-
ical structure of the particular axon may introduce different semantics. Their
anatomical structures maybe related to the specific receptive field properties of
different V4 cells. Distinct clusters may have terminals on V1 cells near pin-
wheel centers (cells with different orientations arranged radially), whereas a lin-
ear array of terminals may be connected to V1 neurons with similar orientation
preference. In consequence, some parts of the V4 RF would have preference for
certain orientations and others may have preference for the certain locations but
be more flexible to different orientations. This hypothesis is supported by re-
cent intracellular recordings from neurons located near pinwheels centers which,
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in contrast to other narrowly tuned neurons, showed subthreshold responses to
all orientations [24]. However, neurons which have fixed orientation can change
other properties of their receptive field like for example spatial frequency, there-
fore the feedback from area V4 can tune them to expected spatial details in the
RF (M. Sur, Brenda Milner Symposium, 22 Sept. 2008, MNI McGill University,
Montreal).

The V4 input modulates V1 cell in the following way:

DR V4 V1 1:

(rV 4
1 ∨ rV 1

1 (xi, yi)), (rV 4
1 ∨ rV 1

1 (xi, yi+1), (rV 4
1 ∨ rV 1

1 (xi+1, yi+1)), . . .

. . . , (rV 4
1 ∨ rV 1

1 (xi+n, yi+m)) → rV 1
2 (13)

Meaning of rV 1
1 (xi, yi) and rV 1

2 are same as explained above for the V1 to
LGN decision rule.

Decision Rules for feedback connections V4→LGN. Anterograde trac-
ing from area V4 showed axons projecting to different layers of LGN and some
of them also to the pulvinar [25] These axons have widespread terminal fields
with branches non-uniformly spread about several millimeters (Fig. 2). Like de-
scending axons in V1, axons from area V4 have within their LGN terminations,
distinct clusters or linear branches (Fig. 2). These clusters and branches are
characteristic for different axons and as it was mentioned above their differences
may be related to different semantics in the decision rule below:

DR V4 LGN 1:

(rV 4
1 ∨ rLGN

1 (xi, yi)), (rV 4
1 ∨ rLGN

1 (xi, yi+1), (rV 4
1 ∨ rLGN

1 (xi+1, yi+1)), . . .

. . . , (rV 4
1 ∨ rLGN

1 (xi+n, yi+m)) → rLGN
2 (14)

Meaning of rLGN
1 (xi, yi) and rLGN

2 are same as explained above for the V1 to
LGN decision rule.

Notice that interaction between FF and FB pathways extends a classical view
that the brain as computer uses two-valued logic. This effect in psychophysics
can be paraphrased as: “I see it but it does not fit my predictions”. In neu-
rophysiology, we assume that a substructure could be optimally tuned to the
stimulus but its activity does not fit to the FB predictions. Such interaction can
be interpreted as the third logical value. If there is no stimulus, the response in
the local structure should have a logical value 0, if stimulus is optimal for the
local structure, it should have logical value 1

2 , and if it also is tuned to expecta-
tions of higher areas (positive feedback) then response should have logical value
1. Generally it becomes more complicated if we consider many interacting areas,
but in this work we use only three-valued logic.
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Fig. 2. Boutons of the descending axon from area V4 with terminals in different parvo-
cellular layers of LGN: layer 6 in black, layer 5 in red, layer 4 in yellow. Total number
of boutons for this and other axons was between 1150 and 2075. We estimated that it
means that each descending V4 axon connects to approximately 500 to over 1000 LGN
(mostly parvocellular) cells [25]. Thick lines outline LGN; thin lines shows layers 5 and
6, dotted line azimuth, and dashed lines show elevation of the visual field covered by
the descending axon. This axon arborization extension has approximately V4 RF size.

3 Results

We have used our model as a basis for an analysis of the experimental data from
the neurons recorded in the monkey’s area V4 [2]. In [2], it was shown that the
RF in V4 can be divided into several subfield that, stimulated separately, can
give us the first approximation of the concept of the shape to which the cell is
tuned [13]. We have also shown that subfields are tuned to stimuli with similar
orientation [2]. In Fig. 3, we demonstrate that the receptive field subfields have
not only similar preferred orientations but also spatial frequencies [2]. We have
divided cell responses into three categories (see Methods) by horizontal lines in
plots A-D of Fig. 3.

We have draw a line near spike frequency 17 spikes/s, which separates re-
sponses of category r1 (above) from r0 (below the threshold line). Horizontal
lines plotted near spike frequency 34 spikes/s separate responses of category r2

(above) from r1 (below). The stimulus attributes related to these three response
categories were extracted in the decision table (Table 1). We summarize results
of our analysis in Figs. 3H and G from Table 1. Fig. 3H presents a schematic of
a possible stimulus that would give medium cell responses (r1). One can imagine



300 A.W. Przybyszewski

Fig. 3. Modified plots from [2]. Curves represent responses of V4 neurons to their
RF subfields grating stimulations with different spatial frequencies (SF). (A-D) SF
selectivity curves across RF with positions indicated in insets. The centers of tested
subfields were 2 deg apart. (E-H) Schematic representation summarizing orientation
and SF selectivity of subfields presented in A-D and in [2]. These figures are based
on the decision table 1, for stimuli in E, F cell responses were r1, for stimuli in G, H
cell responses were r2, (F) and (G) represent a possible stimulus configuration from
schematics (E) and (F).

several classes of possible stimuli assuming that subfield responses will sum up
linearly (for example see Fig. 3F). Fig. 3G shows a schematic of a possible stim-
ulus set-up, which would give r2 response that as we have assumed, is related
not only to the local but also the global visual cortex tuning. One can notice
that in the last case only subfields in the vertical row give strong independent
responses (Fig. 3H).

We assign the narrow (obn), medium (obm), and wide (obw) orientation band-
width as follows: obn if (ob : 0 < ob < 50deg), medium obm if (ob : 50deg <
ob < 100deg), wide obw if (ob : ob > 100deg). We assign the narrow (sfbn),
medium (sfbm), and wide (sfbw) spatial frequency bandwidth: sfbn if (sfb :
0 < sfb < 2c/deg), medium sfbm if (sfb : 2c/deg < sfb < 2.5c/deg), wide
sfbw if (sfb : sfb > 2.5c/deg). For simplicity in the following decision rules,
we assume that the subfields are not direction sensitive; therefore responses to
stimulus orientation 0 and 180 deg should be same.
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Table 1. Decision table for one cell responses to subfields stimulation Fig. 3C-F and
Fig.5 in [2]. Attributes xpr, ypr, sf = 2c/deg, s are constant and they are not presented
in the table. Cells 3* are from Fig. 3 in [2] and cells 5* are from Fig. 5 in [2] processed
in Fig. 3.

cell o ob sfb xp yp r

3c 172 105 0 0 0 1
3c1 10 140 0 0 0 1
3c2 180 20 0 0 0 2
3d 172 105 0 0 -2 1
3d1 5 100 0 0 -2 1
3d2 180 50 0 0 -2 2
3e 180 0 0 -2 0 0
3f 170 100 0 0 2 1
3f1 10 140 0 0 2 1
3f2 333 16 0 0 2 2
5a 180 0 3 0 -2 1
5a1 180 0 0.9 0 -2 2
5b 180 0 3.2 0 2 1
5b1 180 0 1 0 2 2
5c 180 0 3 0 0 1
5c1 180 0 1.9 0 0 2
5d 180 0 0.8 0 0 1

Our results from the separate subfields stimulation study can be presented as
the following decision rules:

DR V4 3:

o180 ∧ sf2 ∧ ((obw ∧ sfbw ∧ xp0 ∧ (yp−2 ∨ yp0 ∨ yp2)))∨

∨ (obn ∧ sfbn ∧ yp0 ∧ (xp−2 ∨ xp2)) → r1 (15)

DR V4 4:

o180 ∧ sf2 ∧ obn ∧ sfbn ∧ xp0 ∧ (yp−2 ∨ yp0 ∨ yp2) → r2 (16)

These decision rules can be interpreted as follows: disc shaped grating stimuli
with wide bandwidths of orientations or spatial frequencies when placed along
vertical axis of the receptive field evoke medium cell responses. However, similar
discs when placed horizontally to the left or to the right from the middle of
the RF, must have narrow orientation and spatial frequency to evoke medium
cell responses. Only a narrowly tuned disc in spatial frequency and orientation
placed vertically from the middle of the receptive field can evoke strong cell re-
sponses. Notice that Figs 3F and 3H show possible configurations of the optimal
stimulus. This approach is similar to the assumption that an image of the object
is initially represented in terms of the activation of a spatially arrayed set of mul-
tiscale, multioriented detectors like arrangements of simple cells in V1 (metric
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templates in subordinate-level object classification of Lades et al. [26]). However,
this approach does not take into account interactions between several stimuli,
when more than one subfield is stimulated, and we will show below there is a
strong nonlinear interaction between subfields. We analyzed experiments where
the RF is stimulated at first with a single small vertical bar and later with two
bars changing their horizontal positions. One example of V4 cell responses to thin
(0.25 deg) vertical bars in different horizontal positions is shown in the upper left
part of Fig. 4 (Fig. 4E). Cell response has maximum amplitude for the middle
(XPos = 0) bar position along the x− axis. Cell responses are not symmetrical
around 0. In Fig. 2F, the same cell (cell 61 in table 2) is tested with two bars.
The first bar stays at the 0 position, while the second bar changes its position
along x − axis. Cell responses show several maxima dividing the receptive field
into four areas. However, this is not always the case as responses to two bars
in another cell (cell 62 in table 2) show only two minima (Fig. 2G). Horizontal
lines in plots of both figures divide cell responses into the three categories r0,
r1, r2, which are related to the mean response frequency (see Methods). Stimuli
attributes and cell responses classified into categories are shown in table 2 for
cells in Fig. 4 and in table 3 for cells in Fig. 5.

We assign the narrow (xprn), medium (xprm), and wide (xprw) x position
ranges as follows: xprn if (xpr : 0 < xpr ≤ 0.6), medium xprm if (xpr : 0.6 <
xpr ≤ 1.2), wide xprw if (xpr : xpr > 1.2). We assign the narrow (yprn), medium
(yprm), and wide (yprw) y position range: yprn if (ypr : 0 < ypr ≤ 1.2), medium
yprm if (ypr : 1.2 < xpr ≤ 1.6), wide yprw if (ypr : ypr > 1.6).

On the basis of Fig. 3 and the decision table 2 (also compare with [18]) the
one-bar study can be presented as the following decision rules:

DR V4 5:
o90 ∧ xprn ∧ xp0.1 ∧ xs0.25 ∧ ys0.4 → r2 (17)

DR V4 6:
o90 ∧ xprw ∧ xp−0.2 ∧ xs0.25 ∧ ys0.4 → r1 (18)

We interpret these rules that r1 response in eq. (18) does not effectively involve
the feedback to the lower areas: V1 and LGN. The descending V4 axons have
excitatory synapses not only on relay cells in LGN and pyramidal cells in V1,
but also on inhibitory interneurons in LGN and inhibitory double banquet cells
in layer 2/3 of V1. As an effect of the feedback, only a narrow range of area
V4 RF responded with a high r2 activity to a single bar stimulus, whereas in
the outside area excitatory and inhibitory feedback influences compensated each
other.

On the basis of Fig. 4 the decision table, the two-bar horizontal interaction
study can be presented as the following Two-bar Decision Rules (DRT):

DRT V4 1:

o90∧xprn∧((xp−1.9∨xp0.1∨xp1.5)∧xs0.25∧ys0.4)1∧(o90∧xp0∧xs0.25∧ys0.4)0→r2

(19)
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DRT V4 2:

o90 ∧ xprm ∧ ((xp−1.8 ∨ xp−0.4 ∨ xp0.4 ∨ xp1.2) ∧ xs0.25 ∧ ys0.4)1∧

∧ (o90 ∧ xp0 ∧ xs0.25 ∧ ys0.4)0 → r1 (20)

One-bar decision rules can be interpreted as follows: the narrow vertical bar
evokes a strong response in the central positions, and medium responses in a
larger area near the central position. Two-bar decision rules claim that: the cell
responses to two bars are strong if one bar is in the middle of the RF (bar
with index 0 in decision rules) and the second narrow bar (bar with index 1 in
decision rules) is in the certain, specific positions in the RF eq. (19). But when
the second bar is in less precise positions, cell responses became weaker eq. (20).
Responses of other cells are sensitive to other bar positions (Fig. 4G). These
differences could be correlated with anatomical variability of the descending

Fig. 4. Modified plots from [2]. Curves represent responses of several cells from area
V4 to small single (E) and double (F, G) vertical bars. Bars change their position along
x-axis (Xpos). Responses are measured in spikes/sec. Mean cell responses ± SE are
marked in E, F, and G. Cell responses are divided into three ranges by thin horizontal
lines. Below each plot are schematics showing bar positions giving r1 (gray) and r2

(black) responses; below (E) for a single bar, below (F and G) for double bars (one
bar was always in position 0). (H) This schematic extends responses for horizontally
placed bars (E) to the whole RF: white color shows excitatory, black color inhibitory
interactions between bars. Bars’ interactions are asymmetric in the RF.
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Table 2. Decision table for cells shown in Fig. 4. Attributes o, ob, sf, sfb were constant
and are not presented in the table.

cell xp xpr xs ys s r

61e -0.7 1.4 0.25 4 2 1
61f1 -1.9 0.2 0.25 4 22 2
61f2 0.1 0.2 0.25 4 22 2
61f3 1.5 0.1 0.25 4 22 2
61f4 -1.8 0.6 0.25 4 12 1
61f5 -0.4 0.8 0.25 4 22 1
61f6 0.4 0.8 0.2 5 4 22 1
61f7 1.2 0.8 0.25 4 22 1
62g1 -1.5 0.1 0.25 4 22 2
62g2 -0.15 0.5 0.25 4 22 2
62g3 -1.5 0.6 0.25 4 22 1
62g4 -0.25 1.3 0.25 4 22 1
62g5 1 0.6 0.25 4 22 1
63h1 -0.5 0 0.5 1 44 2
63h2 1 1 1 1 44 1
63h3 0.2 0.1 0.25 4 22 2

Table 3. Decision table for one cell shown in Fig. 5. Attributes yp, ypr are constant
and are not presented in the table. We introduce another parameter of the stimulus,
difference in the direction of drifting grating of two patches: ddg = 0 when drifting are
in the same directions, and ddg = 1 if drifting in two patches are in opposite directions.

cell xp xpr xs ys ddg r

64c -4.5 3 1 1 1 2
64c1 -1.75 1.5 1 1 1 1
64c2 -0.5 1 1 1 1 2
64d -6 0 1 8 0 2
64d1 -3.5 4.8 1 8 0 1

axons connections. As mentioned above, V4 axons in V1 have distinct clusters
or linear branches. Descending pathways are modulators, which means that they
follow the logical “or” rule. This rule states that cells in area V1 become more
active as a result of the feedback only if their patterns “fit” to the area V4 cell
“expectation”.

The decision table (Table 3) based on Fig. 5 describes cell responses to two
patches placed in different positions along x-axis of the receptive field (RF).
Figure 5 shows that adding the second patch reduced single patch cell responses.
We have assumed that cell response to a single patch placed in the middle of the
RF is r2. The second patch suppresses cell responses to a greater extent when it
is more similar to the first patch (Fig. 5D).
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Fig. 5. Modified plots from [2]. Curves represent V4 cell responses to two patches with
gratings moving in opposite direction - patch 1 deg diameter (C) and in the same (D)
directions for patch 1 deg wide and 8 deg long. One patch is always at x-axis position
0 and the second patch changes its position as it is marked in XPos coordinates. The
horizontal lines represent 95% confidence intervals for the response to a single patch
in position 0. Below C and D, schematics show the positions of the patches and their
influences on cell responses. Arrows are showing the direction of moving gratings. The
lower part of the figure shows two schematics of the excitatory (white) and inhibitory
(black) interactions between patches in the RF. Patches with gratings moving in the
same directions (right schematic) show larger inhibitory areas (more dark color) than
patches moving in opposite directions (left schematic).

Two-patch horizontal interaction decision rules are as follows:

DRT V4 3:

ddg1 ∧ (o0 ∧ xpr3 ∧ xp4.5 ∧ xs1 ∧ ys1)1 ∧ (o0 ∧ xp0 ∧ xs1 ∧ ys1)0 → r2 (21)

DRT V4 4:

ddg1 ∧ (o0 ∧ xpr1 ∧ xp0.5 ∧ xs1 ∧ ys1)1 ∧ (o0 ∧ xp0 ∧ xs1 ∧ ys1)0 → r2 (22)

DRT V4 5:

ddg0 ∧ (o0 ∧ xpr4.8 ∧ xp3.5 ∧ xs1 ∧ ys8)1 ∧ (o0 ∧ xp0 ∧ xs1 ∧ ys1)0 → r1 (23)
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Table 4. Decision table for cells in Fig. 6. Attributes yp, ypr,xs = ys = 0.5deg, s = 33
(two discs) are constant and are not presented in the table. We introduce another
parameter of the stimulus, difference in polarities of two patches: dp = 0 if polarities
are same, and dp = 1 if polarities are opposite.

cell xp xpr dp r

81a -0.1 0.5 0 1
81a1 -1.75 0.3 0 1
81a2 -1.2 1 1 1
81a3 1.25 1.5 1 1
81a4 -1.3 0.3 1 2
81a5 -1.3 0.3 1 2
81a6 1.5 0.4 1 2
81b -1.4 0.6 1 1
81b1 0.9 0.8 1 1
81b2 0.9 0.2 1 2

These decision rules can be interpreted as follows: patches with drifting in
opposite directions gratings give strong responses when positioned very near
(overlapping) or 150% of their width apart one from the other eqs. (21, 22).
Interaction of patches with a similar grating evoked small responses in large
extend of the RF eq. (23).

Generally, interactions between similar stimuli evoke stronger and more ex-
tended inhibition than between different stimuli. These and other examples can
be generalized to other classes of objects.

Two-spot horizontal interaction decision rules are as follows:

DRT V4 6:

dp0∧s33 ∧ (((xp−0.1 ∧xpr0.5)∨ (xp−1.75 ∧xpr0.3))∧xs0.5)1 ∧ (xp0 ∧xs0.5)0 → r1

(24)
DRT V4 7:

dp1∧s33∧(((xp−1.2∧xpr1)∨(xp1.25∧xpr1.5))∧xs0.5)1∧(xp0∧xs0.5)0 → r1 (25)

DRT V4 8:

dp1∧s33∧(((xp−1.3∧xpr0.2)∨(xp1.5∧xpr0.4))∧xs0.5)1∧(xp0∧xs0.5)0 → r2 (26)

DRT V4 9:

dp1∧s33∧(((xp−1.4∧xpr0.6)∨(xp0.9∧xpr0.8))∧xs0.5)1∧(xp0∧xs0.5)0 → r1 (27)

DRT V4 10:

dp1 ∧ s33 ∧ ((xp0.9 ∧ xpr0.2) ∧ xs0.5)1 ∧ (xp0 ∧ xs0.5)0 → r2 (28)

where dp is the difference in light polarities between two light spots (s33), and
subscript 1 is related to spot changing its x-axis position, whereas subscript 0 is
related to the spot in 0 position on x-axis.
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Fig. 6. Modified plots from [2]. Curves represent V4 cell responses to pair of 0.5 deg
diameter bright and dark discs tested along width axis. Continuous lines mark the
curves for responses to different polarity stimuli, and the same polarity stimuli are
marked by dashed line. Schematics for cell responses showed in (A) are in (C-F) and
(I, J). Schematics for cell responses in (B) are in (G) and (H). Interactions between
same polarity light spots (C) are different than interactions between different polarities
patches (D-H). Small responses (class 1) are in (C), (D), (G), and larger responses
(class 2) are in (E), (F), (H). (E) shows that there is no r2 responses in same polarity
two spots interactions. (I) shows small excitatory (gray) in a short range and strong
inhibitory (black) interactions between same polarity spots and (J) shows short range
inhibitory (dark) and longer range excitatory interactions between different polarities
spots.

We propose the following classes of the object’s Parts Interaction Rules:

PIR1: Facilitation when stimulus consists of multiple similar thin bars with
small distances (about 0.5 deg) between them, and suppression when the
distance between bars is larger than 0.5 deg. Suppression/facilitation is very
often a nonlinear function of the distance. In our experiments (Fig. 3), cell
responses to two bars were periodic along the receptive field with dominating
periods of about 30, 50, or 70% of the RF width. These nonlinear interactions
were also observed along vertical and diagonals of the RF and often show
strong asymmetries in relationship to the RF middle.

PIR2: Strong inhibition when stimulus consists of multiple similar patches
filled with gratings with the distance between patch edges ranging from 0
deg (touching) to 2 deg, weak inhibition when distance is between 3 to 5 deg
through the RF width.
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PIR3: If bars or patches have different attributes like polarity or drifting direc-
tions, their suppression is smaller and localized facilitationat the small distance
between stimuli is present. As in bar interaction, suppression/facilitations be-
tween patches or bright/dark discs can be periodic along different RF axis and
often asymmetric in the RF.

We have tested the above rules in nine cells from area V4 by using discs or annuli
filled stimuli with optimally oriented and variable in spatial frequencies drifting
gratings (Pollen et al. [2] Figs. 9, 10). Our assumptions were that if it is a strong
inhibitory mechanism as described in the rule PRI2 then responses to annulus
with at least 2 deg inner diameters will be stronger than responses to the disc. In
addition by changing spatial frequencies of gratings inside the annulus, we have
expected eventually to find other periodicities along the RF width as described
by PIR3.

In summary, we wanted to find out what relations there are between stim-
ulus properties and area V4 cell responses or whether B-elementary granules
have equivalence classes of the relation IND{r} or V4-elementary granules, or
whether [u]B ⇒ [u]B4. It was evident from the beginning that because different
area V4 cells have different properties, their responses to the same stimuli will
be different, therefore we wanted to know if the rough set theory will help us in
our data modeling.

We assign the spatial frequency: low (sfl), medium (sfm), and high (sfh) as
follows: sfl if (sf : 0 < sf ≤ 1c/deg), medium sfm if (sf : 1c/deg < sf ≤
4c/deg), high sfh if (sf : sf > 4c/deg). On the basis of this definition we
calculate for each row in Table 5 the spatial frequency range by taking into
account the spatial frequency bandwidth (sfb). Therefore 107a is divided to
107al and 107am, 108a to 108al and 108am, and 108b to 108bl, 108bm, and
108bh.

Stimuli used in these experiments can be placed in the following ten categories:

Y0 = |sfl xo7 xi0 s4| = {101, 105}
Y1 = |sfl xo7 xi2 s5| = {101a, 105a}
Y2 = |sfl xo8 xi0 s4| = {102, 104}

Y3 = |sfl xo8 xi3 s5| = {102a, 104a}
Y4 = |sfl xo6 xi0 s4| = {103, 106, 107, 108, 20a, 20b}
Y5 = |sfl xo6 xi2 s5| = {103a, 106a, 107al, 108bl}

Y6 = |sfl xo4 xi0 s4| = {108al}
Y7 = |sfm xo6 xi2 s5| = {107am, 108bm}
Y8 = |sfm xo4 xi0 s4| = {107a, 108am}

Y9 = |sfh xo6 xi2 s5| = {108bh}
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Table 5. Decision table for eight cells comparing the center-surround interaction. All
stimuli were concentric, and therefore attributes were not xs, ys, but xo outer diameter,
xi inner diameter. All stimuli were localized around the middle of the receptive field
so that xp = yp = xpr = ypr = 0 were constant and we did not put them in the table.
The optimal orientation were normalized, denoted as 1, and removed from the table.

cell sf sfb xo xi s r

101 0.5 0 7 0 4 0
101a 0.5 0 7 2 5 1
102 0.5 0 8 0 4 0
102a 0.5 0 8 3 5 0
103 0.5 0 6 0 4 0
103a 0.5 0 6 2 5 1
104 0.5 0 8 0 4 0
104a 0.5 0 8 3 5 2
105 0.5 0 7 0 4 0
105a 0.5 0 7 2 5 1
106 0.5 0 6 0 4 1
106a 0.5 0 6 3 5 2
107 0.5 0.25 6 0 4 2
107a 2.1 3.8 6 2 5 2
107b 2 0 4 0 4 1
108 0.5 0 6 0 4 1
108a 2 0 4 0 4 2
108b 5 9 6 2 5 2
20a 0.5 0 6 0 4 1
20b 0.5 0 6 0 4 2

These are equivalence classes for stimulus attributes, which means that in each
class they are indiscernible IND(B). We have normalized orientation bandwidth
to 0 in {20a, 20b} and spatial frequency bandwidth to 0, in cases {107, 107a,
108a, 108b}, and put values covered by the bandwidth to the spatial frequency
parameters. There are three ranges of responses denoted as ro, r1, r2. Therefore
on the basis of the neurological data there are the following three categories of
cell responses:

|ro| = {101, 102, 102a, 103, 104, 105}
|r1| = {101a, 103a, 105a, 107b, 108, 20a}

|r2| = {104a, 106a, 107, 107al, 107am, 108al, 108am, 108bl, 108bm, 108bh, 20b}
which are denoted as Xo, X1, X2.

We will calculate the lower and upper approximation [1] of the brains basic
concepts in term of stimulus basic categories:

B
¯

X0 = Y0 ∪ Y2 = {101, 105, 102, 104}
B̄X0=Y0∪Y2∪Y3∪Y4={101, 105, 102, 104, 102a, 104a, 103, 106, 107, 108, 20a, 20b}
B
¯

X1 = Y1 = {101a, 105a}
B̄X1 = Y1 ∪ Y5 ∪ Y6 ∪ Y4 =
{101a, 105a, 103a, 107al, 108b, 106a, 20b, 107b, 108a, 103, 107, 106, 108, 20a}
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B
¯

X2 = Y7 ∪ Y9 = {107am, 108bm, 108bh}
B̄X2 = Y7 ∪ Y9 ∪ Y8 ∪ Y6 ∪ Y3 ∪ Y4 ∪ Y5 = {107am, 108bm, 108bh, 107b, 108am,
102a, 104a, 103a, 107a, 108bl, 106a, 20b, 103, 107, 106, 108, 20a, 108al}

Concept 0 and concept 1 are roughly B−defined, which means that only with
some approximation we have found that the stimuli do not evoke a response, or
evoke weak or strong response in the area V4 cells. Certainly a stimulus such as
Y0 or Y2 does not evoke a response in all our examples, in cells 101, 105, 102,
104. Also stimulus Y1 evokes a weak response in all our examples: 101a, 105a.
We are interested in stimuli that evoke strong responses because they are specific
for area V4 cells. We find two such stimuli, Y7 and Y9. In the meantime other
stimuli such as Y3, Y4 evoke no response, weak or strong responses in our data.

We can find the quality [1] of our experiments by comparing properly classified
stimuli POSB(r) = {101, 101a, 105, 105a, 102, 104, 107am, 108bm, 108bh} to all
stimuli and to all responses: γ{r} = card{101,101a,105,105a,102,104,107am,108bm,108bh}

card{101,101a,,20a,20b}
= 0.38. We can also ask what percentage of cells we fully classified. We obtain
consistent responses from 2 of 9 cells, which means that γ = 0.22. This is related
to the fact that for some cells we have tested more than two stimuli. What is
also important from an electrophysiological point of view is there are negative
cases. There are many negative instances for the concept 0, which means that
in many cases this brain area responds to our stimuli; however it seems that our
concepts are still only roughly defined.

We have following decision rules:

DR V4 7:
sfl ∧ xo7 ∧ xi2 ∧ s5 → r1 (29)

DR V4 8:
sfl ∧ xo7 ∧ xi0 ∧ s4 → r0 (30)

DR V4 9:
sfl ∧ xo8 ∧ xi0 ∧ s4 → r0 (31)

DR V4 10:
(sfm ∨ sfh) ∧ xo6 ∧ xi2 ∧ s5 → r2 (32)

These can be interpreted as the statement that a large annulus (s5) evokes
a weak response, but a large disc (s4) evokes no response when there is modu-
lation with low spatial frequency gratings. However, somewhat smaller annulus
containing medium or high spatial frequency objects evokes strong responses. It
is unexpected that certain stimuli evoke inconsistent responses in different cells
(Table 5):

103: sfl ∧ xo6 ∧ xi0 ∧ s4 → r0

106: sfl ∧ xo6 ∧ xi0 ∧ s4 → r1

107: sfl ∧ xo6 ∧ xi0 ∧ s4 → r2

A disc with not very large dimension containing a low spatial frequency grating
can evoke no response (103), a small response (106), or a strong response (107).
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4 Discussion

Physical properties of objects are different from their psychological represen-
tation. Grdenfors [27] proposed to describe the principle of human perceptual
system as grouping objects by similarities in the conceptual space. Human per-
ceptual systems group together similar objects with unsharp boundaries [27],
which means that objects are related to their parts by rough inclusion or that
different parts belong to objects with some approximation (degree) [28]. We sug-
gest that similarity relations between objects and their parts are related to the
hierarchical relationships between different visual areas. These similarities may
be related to synchronizations of multi-resolution, parallel computations and are
difficult to simulate using a digital computer [29].

Treisman [30] proposed that our brains extract features related to different
objects using two different procedures: parallel and serial processing. The “basic
features” were identified in psychophysical experiments as elementary features
that can be extracted in parallel. Evidence of parallel features extraction comes
from experiments showing that the extraction time becomes independent of the
number of objects. Other features need serial searches, so that the extraction
time is proportional to the number of objects. High-level serial processing is
associated with integration and consolidation of items combined with conscious
awareness. Other low-level parallel processes are rapid, global, related to high-
efficiency categorization of items and largely unconscious [30]. Treisman [30]
showed that instances of a disjunctive set of at least four basic features could be
detected through parallel processing. Other researchers have provided evidence
for parallel detection of more complex features, such as shape from shading [31]
or experience-based learning of features of intermediate complexity [32].

Thorpe et al. [33] in recent experiments, however, found that human and non-
human primates can rapidly and accurately categorize briefly flashed natural
images. Human and monkey observers are very good at deciding whether or not
a novel image contains an animal even when more than one image is presented
simultaneously [34]. The underlying visual processing reflecting the decision that
a target was present is under 150ms [33]. These findings are in contradiction
to the classical view that only simple, “basic features”, likely related to early
visual areas like V1 and V2, are processed in parallel [30] Certainly, natural
scenes contain more complex stimuli than “simple” geometric shapes. It seems
that the conventional, two-stage perception-processing model needs correction,
because to the “basic features” we must add a set of unknown intermediate
features. We propose that at least some intermediate features are related to
receptive field properties in area V4. Area V4 has been associated with shape
processing because its neurons respond to shapes [35] and because lesions in
this area disrupt shape discrimination, complex-grouping discriminations [36],
multiple viewpoint shape discriminations [37], and rotated shape discriminations
[38]. Area V4 responses are also driven by curvature or circularity, which was
recently observed by mean of the human fMRI [39].

By applying rough sets to V4 neuron responses, we have differentiated be-
tween bottom-up information (hypothesis testing) related to the sensory input,
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and predictions, some of which can be learned but are generally related to posi-
tive feedback from higher areas. If a prediction is in agreement with a hypothesis,
object classification will change from category 1 to category 2. Our research sug-
gests that such decisions can be made very effectively during pre-attentive, par-
allel processing in multiple visual areas. In addition, we found that the decision
rules of different neurons can be inconsistent.

One should take into account that modeling complex phenomena demands the
use of local models (captured by local agents), if one would like to use the mul-
tiagent terminology [6]) that should be fused afterwards. This process involves
negotiations between agents [6] to resolve contradictions and conflicts in local
modeling. One of the possible approaches in developing methods for complex
concept approximations can be based on the layered learning [41]. Inducing con-
cept approximation should be developed hierarchically starting from concepts
that can be directly approximated using sensor measurements toward complex
target concepts related to perception. This general idea can be realized using
additional domain knowledge represented in natural language.

We have proposed decision rules for different visual areas and for FF and FB
connections between them. However in processing our V4 experimental data,
we also have found inconsistent decision rules. These inconsistencies could help
process different aspects of the properties of complex objects. The principle is
similar to that observed in the orientation tuning cells of the primary visual
cortex. Neurons in V1 with overlapping receptive fields show different preferred
orientations. It is assumed that this overlap helps extract local orientations in
different parts of an object. However, it is still not clear which cell will dominate
if several cells with overlapping receptive fields are tuned to different attributes
of a stimulus. Most models assume a “winner takes all” strategy; meaning that
using a convergence (synaptic weighted averaging) mechanism, the most domi-
nant cells will take control over other cells, and less represented features will be
lost. This approach is equivalent to the two-valued logic implementation. Our
finding from area V4 seems to support a different strategy than the “winner
takes all” approach. It seems that different features are processed in parallel
and then compared with the initial hypothesis in higher visual areas. We think
that descending pathways play a major role in this verification process. At first,
the activity of a single cell is compared with the feedback modulator by log-
ical conjunction to avoid hallucinations. Next, the global, logical disjunction
(“modulators”) operation allows the brain to choose a preferred pattern from
the activities of different cells. This process of choosing the right pattern may
have strong anatomical basis because individual axons have variable and complex
terminal shapes, facilitating some regions and features against other so called
salient features (for example Fig. 2). Learning can probably modify the synaptic
weights of the feedback boutons, fine-tuning the modulatory effects of feedback.

Neurons in area V4 integrate an object’s attributes from the properties of
its parts in two ways: (1) within the area via horizontal or intra-laminar lo-
cal excitatory-inhibitory interactions, (2) between areas via feedback connec-
tions tuned to lower visual areas. Our research put more emphasis on feedback
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connections because they are probably faster than horizontal interactions [42].
Different neurons have different Part Interactions Rules (PIR as described in
the Results section) and perceive objects by way of multiple “unsharp windows”
(Figs. 4, 6). If an object’s attributes fit the unsharp window, a neuron sends
positive feedback [3] to lower areas, which as described above, use “modulator
logical rules” to sharpen the attribute-extracting window and therefore change
the neurons response from class 1 to class 2 (Fig. 4 J and K; Fig. 6 C to D, E to
F, and G to H ). The above analysis of our experimental data leads us to suggest
that the central nervous system chiefly uses at least two different logical rules:
“driver logical rule” and “modulator logical rule.” The first, “driver logical rule,”
processes data using a large number of possible algorithms (over-representation).
The second, “modulator logical rule,” supervises decisions and chooses the right
algorithm.

Below we will look at possible cognitive interpretations of our model using
the shape categorization task as an example. The classification of different ob-
jects by their different attributes has been regarded as a single process termed
“subordinate classification” [40]. Relevant perceptual information is related to
subordinate-level shape classification by distinctive information of the object
like its size, surface, curvature of contours, etc. There are two theoretical ap-
proaches regarding shape representation: metric templates and invariant parts
models. As mentioned above, both theories assume that an image of the object
is represented in terms of cell activation in areas like V1: a spatially arrayed
set of multi-scale, multi-oriented detectors (“Gabor jets”). Metric templates [26]
map object values directly onto units in an object layer, or onto hidden units,
which can be trained to differentially activate or inhibit object units in the next
layer [41]. Metric templates preserve the metrics of the input without the ex-
traction of edges, viewpoint invariant properties, parts or the relations among
parts. This model discriminates shape similarities and human psychophysical
similarities of complex shapes or faces [25]. Matching a new image against those
in the database is done by allowing the Gabor jets to independently change
their own best fit (change their position). The similarities of two objects will be
the sum of the correlations in corresponding jets. When this methods is used,
changes in object or face position or changes in facial expressions can achieve
95% accuracy between several hundreds faces [43]. The main problems with the
Lades model [26] described above are that it does not distinguish among the
largest effects in object recognition it is insensitive to contour variations, which
are very important psychophysically speaking, and it is insensitive to salient
features (non-accidental properties [NAP]) [3].

The model we propose here suggests that these features are probably related
to effects of feedback pathways, which may strengthen differences, signal salient
features and also assemble other features, making it possible to extract con-
tours. A geon structural description (GSD) is a two-dimensional representation
of an arrangement of parts, each specified in terms of its non-accidental charac-
terization and the relations amongst these parts [38]. Across objects, the parts
(geons) can differ in their NAP. NAP are properties that do not change with
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Fig. 7. Comparison of differences in nonaccidental properties between a brick and a
cylinder using geon [3] and our model. The geon shows attributes from psychological
space like curves, parallels or vertices, which may be different in different subjects. The
neurological model compares properties of both objects on the basis of a single cell
recordings from the visual system. Both objects can stimulate similar receptive fields
in area V4. These receptive fields are sensitive in annuli - they extract orientation
change in different parts of the RF [2]. Area V1 RFs are sensitive to edge orientations,
whereas LGN RFs extract spots related to corners. All these different attributes are
put together by FF and FB pathways.

small depth rotations of an object. The presence or absence of the NAP of some
geons or the different relations between them may be the basis for subordinate
level discrimination [38]. The advantage of the GSD is that the representation
of objects in terms of their parts and the relations between them is accessible to
cognition and fundamental for viewpoint invariant perception. Our neurological
model introduces interactions between RF parts as in the geon model; however,
our parts are defined differently than the somewhat subjective parts of the GSD
model. Fig. 7 shows differences in a simple objects understanding between geon
and our neurological approach. The top part of this figure shows differences in
nonaccidental properties between a brick and a cylinder [3]. We propose hierar-
chical definition of parts based on neurophysiological recordings from the visual
system. Both objects may be classified in V4 by the receptive field discriminating
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between different stimulus orientations in its central and peripheral parts as it
is schematically presented in Fig. 7 [2]. Another, different classification is per-
formed by area V1, where oriented edges are extracted from both objects (Fig.
7). However, even more precise classification is performed in LGN where objects
are seen as sets of small circular shapes similar to receptive fields in the retina
(bottom part of Fig. 7).

In our model, interactions between parts and NAPs are associated with the
role of area V4 in visual discrimination, as described in the above lesion experi-
ments [34-36]. However, feedback from area V4 to the LGN and area V1 could
be responsible for the possible mechanism associated with the properties of the
GSD model. The different interactions between parts may be related to the com-
plexity and the individual shapes of different axons descending from V4. Their
separated cluster terminals may be responsible for invariance related to small
rotations (NAP). These are the anatomical bases of the GSD model, although we
hypothesize that the electrophysiological properties of the descending pathways
(FB), defined above as the modulator, are even more important. The modu-
lating role of the FB is related to the anatomical properties of the descending
pathways’ logic. Through this logic, multiple patterns of the coincidental activity
between the LGN or V1 and FB can be extracted. One may imagine that these
differently extracted patterns of activity correlate with the multiple viewpoints
or shape rotations defined as NAP in the GSD model.

In summary, by applying rough set theory to model neurophysiological data
we have shown a new approach for objects categorization in psychophysical
space. Two different logical rules are applied to indiscernibility classes of LGN,
V1, and V4 receptive fields: “driver logical rules” put many possible objects’
properties together and “modulator logical rules” choose these attributes which
are in agreement with our previous experiences.
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