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Intracellularly recorded light-responses of X-type ganglion cells in the cat retina were separated, with 
the help of a wavelet method, into “slow” membrane ~G”~~tentia~ and the corresponding spike 
trains. In response to sinusoidally modulated high intensity light spots with different sizes and 
frequencies, X-type ganglion cells show both oscillations correlated with the stimulus frequency aud 
other, faster, oscillations that were not aIways locked to the stimuh~s. A forced van der Pol oscillator 
model with stimulus-dependent coefficients proved to describe the empirical Andings quite well. A 
linearity-coefllcient of tbe equations indicates strong nonlinearity at a temporal frequency of 8 I-I2 with 
spot sizes on tite order of 0.547 deg and decreasing ~nR~~~ at lower temporal frequencies or 
smaller spot sizes, while the faster oscillations become more prominent. We could not determine 
whetber the oscillations are intrinsic to the cell-membrane or geuerated by (or in interaction with) the 
p~ga~~~c retinal meshwork. The results show that X-cell spike-trains can contain stations that 
are not phase-locked to the stimulus and that are therefore virtually invisible after stimulus 
synchronous averaging. It is not likely that thm retinal oscillatious directly induce the well described 
o~~~tio5s in cat visual cortex, since they usuaity falf in a different frequency range. 

Transient oscillations Cat retina Intracellular ganglion cell recordings van der Pol oscillator 

In most neurophysiological experiments, periodic stimu- 
lation and averaging techniques are used. In such an 
approach one implicitly assumes that all relevant re- 
sponse components are synchronized with the stimulus. 
The application of these popular analysis methods is 
ineffective, however, if there exist oscillations that are 
not directly synchronized with the stimulus and which 
possibly appear only in part of the stimulation cycle. We 
have analysed the temporal properties of X-type retinal 
ganglion cells with special emphasis on the analysis of 
o~i1lations. Depending on the parameters of light stimu- 
lation two distinct oscillations were found: (1) stimulus- 
synchronized and (2) non-synchronized oscillations. The 
latter type of o~illations wouid be di~cult to detect after 
response averaging, but can be seen in the raw data and 
in phase space plots. 

It may be difficult to separate the spike generation 
mechanism (SGM) from the mechanism(s) responsible 
for ganglion cell membrane potential changes, because 
they may, and probably will, influence each other like a 
pair of coupled oscillators. In this context it is important 
to study the question whether there exist modes of 
oscillation that are evoked by, but not necessarily syn- 

‘Utrecht Biophysics Research Institute, Utrecht, The Netherlands. 
tTo whom all correspondence should be addressed at: Department of 

Physiology, Freie Universitit Berlin, Amimallee 22, IWO Berlin 33, 
Germany. 

$Department of Comparative Physiology, Utrecht University, 
Padualaan 8, 3584 CH Utrecht, The Netherlands. 

chronized with, the stimulus, and to study the possibility 
of spontaneous oscillations in the absence of a stimulus 
or independent of it. If these two kinds of oscillatory 
phenomena exist, and we will show that they do, they 
provide evidence for the idea of coupled oscillators. The 
theme of stimulus-induced oscillations has recently 
gained a lot of interest because of possible implications 
for the “binding” or “linking” of local neuronal activi- 
ties across cortical areas into a “global” message (e.g. 
Eckhorn, Bauer, Jordan, Brosch, Rruse, Munk & 
Reitboeck, 1988; Engel, Unig, Kreiler & Singer, 1991). 
We do not expand on those ideas, but find it interesting 
from a general neurobiological perspective that oscil- 
lations prove to be rather ubiquitous in the nervous 
system, if looked for. The retina appears not to be an 
exception, a finding that might caution against placing 
the burden of perception, thinking or even consciousness 
too one-sidedly on neuronal oscillations. Our results 
argue against the idea that cortical oscillations find their 
direct origin in the retina, because we find mostly 
different eigen frequencies than those reported recently 
on the basis of intracellular recordings in the cat’s visual 
cortex (Jagadeesh, Gray & Ferster, 1992). However, all 
types of o~llations might have a similar neurobiological 
cause in local feedback loops and intrinsic membrane 
properties. From this perspective the present findings are 
of general interest also to those who concentrate on 
cortical visual mechanisms or on other species. 

The present work is in some respects a continuation 
of our previous analysis of the SGM (Lankheet ef al., 
1989a, b), but here we do not restrict ourselves to 
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averaging methods of analysis. A model of the spike 
generation mechanism of cat retinal ganglion cells was 
proposed (Lankheet, Molenaar & van de Grind, 1989a, b) 
based on a comparison of averaged G-potentials and 
averaged spike frequencies. The model accurately predicted 
the average spike responses from the G-potential. It was 
suggested that there are at least two dynamic processes 
~derlying the SGM, one correlated with a refractory 
threshold with a time constant of about 0.9 msec (Hodgkin 
& Huxley, 1952), and another, slower threshold adaptation 
with a time constant of about 63 msec. 

In the present paper we use different methods of 
analysis to show the presence of nonlinearities and 
oscillations in the intra~ll~arly recorded X-type 
ganglion cell response to light. The spikes were sub- 
tracted with a wavelet method leaving a signal which we 
will call the G-potential.* We present a detailed analysis 
and a precise and abstract mathematical description of 
G-potentials in X-cells. The mathematical description is 
independent of any speculations on the underlying 
mechanisms. Even though we touch upon possible in- 
terpretations in terms of retinal network properties in the 
Discussion, it must be emphasized, that more and differ- 
ent studies’are necessary to unravel the mechanistic basis 
of the reported nonlinearities and oscillations in X-cells. 

Our mathematical (phenomenological) modelling ap- 
proach is related to that of Glass and Mackey (1979) in 
their study of the periodic forcing of an integrate-and- 
fire model. In that model the authors assumed that the 
stimulus caused periodic changes of the threshold. De- 
pending on the level of input activity it leads to bifur- 
cations and to the appearance of different phase-locking 
zones in the relation between the input and the output 
of the model. However, a closer analysis of cat X-cell 
G-potential responses to modulated light spots with 
different frequencies and sizes, shows that the situation 
is more complex than for a periodic forcing of the 
integrate-and-fire model. We analysed different oscil- 
lations which are difficult to detect after averaging. They 
are only in part synchronized with spikes or spike bursts. 
Oscillations that are not synchronized with the stimulus 
introduce oscillations in the spike trains, which are often 
treated as noise in averaging methods of analysis. It 
will be shown that this “noise” can be increased or 
decreased by changing the parameters of stimulation. 

*A G-potential is defined as the intracellular ganglion ceh signal with 
the spikes subtracted as described in our Methods section. There 
is no generally accepted terminology for such a signal yet. “Soma” 
potential is unsatisfactory because we cannot be completely certain 
that we record from the soma rather than the axon-hillock or 
dendritic side of the cell. Similarly “postsynaptic” potential is 
unsatisfactory. “Membrane” potential often suggests some long 
term average or resting value and if one is prepared to use it in a 
more dynamic sense it should in&de the spikes, which the 
G-potential does not. “Slow” potential is clearly at variance with 
the relatively high frequency components and noise of the signal. 
“Generator” potential is suggestive enough, because we indeed 
refer to the signal that generates or directly underlies the spike 
trains. but many associate this term with receptors. Thus we 
compromise by using the acronym G-potential, which has the 
added advantage that one can read it as G(anglion all)-potential. 

Such changes can be modelled using the van der Pol 

equation. Changing parameters of a so-called external 
forcing term (stimulus) in this model shows the coexis- 
tence of two different types of oscillation: one is synchro- 
nized to the stimulus and the other is non-synchronized. 

METHODS 

Preparation and recording 

The method of animal preparation and intracellular 
recording has been described more extensively before 
(Foerster, van de Grind & Griisser, 1977; Lankheet 
et al., 1989a). Expe~ments were performed under pento- 
barbital anaesthesia (40 mg/kg i.p. initial dose). The cats 
were artificially ventilated and end-tidal PCO, was kept 
between 4 and 5%. Muscle relaxation was initiated with 
80mg flaxedil and maintained with a continuous infu- 
sion of 6.6 mg gallamine triethiodide, 0.25 mg d- 
tubocura~ne and 5% glucose in 3 ml Ringer solution per 
hr per kg b.w. We monitored the form of the intra-aortic 
EKG, the (stability of the) heart rate and blood pressure. 
These data were used to dose additional i.v. injections of 
pentobarbital during the experiment. Rectal temperature 
was kept at about 38°C. Pupils were dilated with at- 
ropine and phenyleph~ne was used to retract the nicti- 
tating membrane. Lidocaine 2% was injected at all 
surgical sites. Ganglion cell activity was recorded intra- 
cellularly in the optically intact in situ eye as described 
before (Lankheet et al., 1989a, b). The corneae were 
covered with contact lenses with a 1.5 x 6 mm artificial 
pupil. We used a stereotaxic frame that was specially 
deveioped for stable recordings from single units in the 
cat retina (Molenaar & van de Grind, 1980). The glass 
microelectrodes were filled with 4 M potassium acetate 
and had an impedance of 15-70 Ma (measured with a 
1 kHz square-wave signal). The recorded ganglion cell 
responses were amplified and fed into a tape-recorder 
(DTR 1800, Biologic) for off-line analysis. 

Cells were classified on the basis of their response to 
a square-wave modulated light spot of about the size of 
the receptive field centre. The frequency was 0.25 Hz 
(alternating decrements and increments of 2 set dur- 
ation), the modulation depth was 0.6, the average lumi- 
nance of the modulated spot was 53 cd/m2 and that of 
the general background on the back-projection screen 
0.01 cd/m*. For our purposes it was sufficient to call a 
unit “sustained” or “X-type” (Enroth-Cugell & Robson, 
1966) if there was a significant difference in spike 
frequencies measured just before the end of the incre- 
ment part of the square-wave and just preceding the 
beginning of the decrement about 2 set later. 

Light sources were 450 W Xenon lamps driven by 
Heinzinger modulatable power supplies (bandwidth 
about 0-1OOOHz). The light beams passed through 
optical channels containing lenses, diaphragms, mirrors 
and filters and were focussed on a back-projection 
screen, having a diffuse background luminance of 
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0.01 cd/m2. The spots were carefully centred on the 
receptive field with the help of a computer-driven “mech- 
anical oscilloscope” (Molenaar, Voorhorst, Schreurs, 
Broekhuyzen, Nivard & van de Grind, 1980) and were 
either sinusoidally or square-wave modulated in inten- 
sity. The mean spot luminance was in the photopic range 
(53-530 cd/m2), the modulation depth was 0.6 in all 
cases. Since the adaptation level of ganglion cells is 
determined by the mean flux on their receptive field 
(Enroth-Cugell & Shapley, 1973) we could be confident 
that the recorded cells were light adapted in the photopic 
range. This is important in classifying the cells as we did 
in terms of their transient-sustained character. 

Data analysis 

The analysis was performed on a DEC-5000 system 
using the Interactive Data Language (IDL). The data 
were sampled with 16 bits resolution at a frequency of 
10 kHz. The separation of action potentials from the 
slower changes in the intracellularly recorded membrane 
potential was performed as follows. (1) The signal was 
convolved with a “Mexican hat” wavelet function 
(Przybyszewski, 199 1). The width of the wavelet function 
was several msec and depended on the duration and 
shape of the action potentials. The spikes were detected 
and extracted by applying an interactively hand-tuned 
threshold to the wavelet transformation of the signal. 
This method is similar to the LPD (low-pass filter 
derivation) method (Morin-Poll & Tobin, 1991) but it 
is more universal because one can optimize the spike 
detection and extraction through the choice of the 
wavelet function and its duration, (2) The G-potential 
was extracted by removing action potentials as described 
above and by interpolation of the removed points by a 
spline function. This method is better than our previous 
method in which linear interpolation was used 
(Lankheet et al., 1989a). 

Hanning windowing and FFT were performed first, 
followed by averaging in the frequency domain. This 
method of analysis opens the possibility to find har- 
monic, subharmonic or quasiperiodic oscillations if 
the number of analysed periods is large enough. It is 
also possible to find higher frequency oscillations if 
phase changes from period to period are not too large. 
In most parts of our recordings there were oscillations 
that were not, or only partly, synchronized with the 
stimulus. They are hard to find on averaging in the 
frequency domain, and they are revealed more clearly in 
phase space. 

The G-potential was drawn in a so-called pseudo 
three-dimensional phase space (Moon, 1987) by plotting 
samples of the G-potential x(t) along the x-coordinate, 
delayed samples x(t + dt) along the y-coordinate and 
the stimulus values along the z-coordinate. The attrac- 
tors in pseudo phase space have properties similar to 
those in classic phase space (Moon, 1987). This means 
that we can, for the purposes of this paper, treat our 
pseudo phase space plots as if they were normal phase 
space plots with the G-potential along the x-axis, its 
derivative along the y-axis and stimulus values along the 

z-axis. In the chosen coordinate system the structure of 
an attractor can only be seen for those parameters of 
stimulation, for which the stimulus-synchronized oscil- 
lations dominate and for which the faster nonsyn- 
chronous oscillations are not too strong. The structure 
of the attractor could be seen better when the x,y,z 
coordinate system was converted into cylindric coordi- 
nates by the following transformation: 

u = x cos(wt) - y sin(ot) 

u = -x sin(W) - y cos(wt). 

(la) 

(lb) 

This is a natural transformation for the van der Pol 
equation (Hayashi, 1964). 

RESULTS 

Fourier analysis of the G-potential 

As described in Methods, the G-potential was 
extracted from the intracellular potential on the basis 
of its shape and amplitude by using the wavelet 
method. Figure 1 shows examples of the intracellularly 
recorded ganglion (G)cell responses to different fre- 
quencies of light stimulation from 2 Hz (top row) to 
24 Hz (bottom row). For these frequencies of stimu- 
lation the size of the light spot was changed from 0.7 deg 
[Fig. l(A)], to 0.5 deg [Fig. l(B)] and 0.2 deg [Fig. l(C)]. 
For each combination of frequency and spot size 
three traces are shown. The upper traces present the 
measured light response of the intracellular potential. 
For this particular cell the spikes had a maximum 
amplitude of about 45mV (passband of the record- 
ing system O-3 kHz). The middle traces represent 
the extract G-potential at a higher magnification. It can 
be seen (especially in the lower panels) that the interp- 
olation with a spline function introduces minimal arte- 
facts which are hardly visible in the G-potential traces. 
The occurrence of spikes does not seem to affect the 
G-potential very strongly and not longer than a few 
msec. Note that it is sometimes difficult to predict 
the occurrence of spikes from the modulations of the 
G-potential, especially for higher frequencies of 
stimulation. 

Comparing spike trains and G:potential fluctuations 
in this figure, one can see that in most cases spike bursts 
are synchronized with the stimuli and appear during an 
increase or on the top of oscillations in the G-potential 
which is also synchronized with the stimulus. This kind 
of oscillation will be called a “slow oscillation”. Bursts 
of spikes have the highest frequency and regularity in 
response to fast and large changes in the G-potential. 
This confirms previous findings (Lankheet et al., 
1989a, b) that spike generation seems to be more sensi- 
tive to changes of the G-potential than to its absolute 
value. It is also evident that, in addition to the slow 
G-potential fluctuation, there exist much faster changes, 
which are not always synchronized with the stimuli. For 
low frequencies of stimulation (2 or 4 Hz) their ampli- 
tude is smaller than the amplitude of the slow oscil- 
lations. In contrast, for a 24 Hz stimulus frequency, it is 
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(A) Spot size 8.7 dcg 

6Hr 

(B) Spot uizt g-5 d8g Spot eke 6.2 dtg 

FIGURE 1. Intracellularly recorded responses from an On-centre X-type ganglion cell to sinusoidal light intensity modulation. 
The mean luminance was 530 cd/m2 and the contrast was 0.6. Spot sizes and stimulus frequencies as indicated in the figure. 
The top trace for each stimulus condition is the recorded intracellular membrane potential. The spike amplitude in these figures 
is 45 mV. The middle trace represents the G-potential, i.e. the recorded membrane potential after removal of the spikes, at 

a higher magnification. The bottom trace shows the time-course of the light intensity m~ulation. 

difficult to separate the modulation of the G-potential 
synchronized with the light stimulus from the fast and 
nonsynchronous oscillations. At this stimulus frequency 
action potentials are not generated as regularly any more 
as for the lower stimulus frequencies and they are not 
generated in every period of stimulation. Analysis of the 
G-potential modulations shows that there are some 
regularities which seem not to be correlated with spikes 
in such a direct way as for lower stimulation frequencies. 

For a stimulus frequency of 16 Hz and a spot size of 
0.7 deg, the amplitude of the slow modulation is evi- 
dently larger than that of the faster fluctuations. We 
interpreted this as a case in which the stimulation 

frequency is near the resonance frequency for slow 
fluctuations. This interpretation is supported by a power 
spectrum analysis of the G-potential (Fig. 2). For a 
stimulus frequency of 16 Hz, the power spectrum ampli- 
tude for the first harmonic is about ten times higher than 
for the other harmonics. This is not the case for other 
stimulation frequencies and for other spot sizes. Inspect- 
ing the power spectra for both lower (8, 4, 2, 1 Hz) and 
higher (24 Hz) stimulus frequencies one can always find 
several other peaks correlated with harmonics of the 
stimuius frequency. For stimulus frequencies higher than 
24Hz (not shown) the amplitude of the harmonics is 
very small in comparison to the other frequencies in the 
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(c) Spot ste 0.2 dcg 
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FIGURE 2. The power spectra of the G-potential for the ~~~n~e X-type ganglion ceIf of Fig. 1. The stimuh~s parameters 
are equal to those in Fig. 1. Spot sizes and modulation frequencies are indicated in the figure. The G-potential was divided 
into several subparts, the number of which depended on the stimuhts frequency. The data were Fonrier analysed using the 
FFT after applying a Hanning window. The response parameters &om the subparts were averaged in the frequency domain. 

power spectrum. Decreasing the spot size from 0.7 to 0.5 trum again. In this case stimulus-synchronized modu- 
deg caused the 16 Hz resonance to disappear [Fig. 2 cf. lations are more evident in the time domain [Fig. l(C)]. 
(B) to (A)]. This is also evident from the changes of the These kinds of change were also observed for other 
G-potential in time [Fig. l(E)] at the stimulus frequency stimulation parameters and they provide evidence for 
of 15 Hz. A further reduction of the spot size to 0.2 deg nonlinearities in the retinal circuits between stimulus and 
causes the 16 Hz peak to dominate in the power spec- G-potential. The ~o~li~~~ti~ could be inffuenced by 



866 A. W. PRZYBYSZEWSKI et al 

changing the spot size. Another example of strong 
changes in nonlinearity with changing spot size can be 
observed for 8 Hz stimulation. For larger spots (0.7 and 
0.5) there are many harmonics in the power spectrum 
[Fig. 2(A, B)] indicating strong nonlinearities that can 
also be seen in the time domain [Fig. l(A, B)]. Changing 
the spot size to 0.2 deg causes the stimulation frequency 
to dominate in the power spectrum and results in a more 
linear response [Figs l(C) and 2(C)]. Notice that for this 
spot the spike bursting lost its regularity [cf. Fig. l(A, B) 
with Fig. l(C)]. For all frequencies of stimulation and all 
spot sizes the power spectrum amplitude for frequencies 
above 50 Hz changes with frequency in proportion to 

f -‘.5* 
In order to study the fast oscillations in more detail 

the G-potential fluctuations are plotted in a pseudo 
three-dimensional phase space (Fig. 3). Such a plot is 
equivalent to a phase space plot (see Methods). Suppose 
the system’s response to a sine wave were a pure sine 

wave of the same frequency again. This would lead to a 
circle in two-dimensional phase space (a sine along the 
x-axis vs a cosine on the y-axis, like a Lyssajous figure). 
In three-dimensional phase space this leads to an ellip- 
soid, the position of which depends upon the phase shift 
between input (z-axis) and response (x-axis). If the 
system now were to generate an additional higher fre- 
quency component we would get a torus in phase space. 
Depending on the phase relations (locked or not locked) 
and the frequency relationship between both response 
components the torus might be completely or partly 
covered by a space curve, the so-called trajectory. For 
example, at a stimulation frequency of 16 Hz in Fig. 3 
these curves make large loops which are synchronized to 
the stimulus frequency. There are also small waves that 
do not exactly coincide with each other. These waves 
correlate with the fast oscillations in the G-potential. 

Figure 3 shows responses to a sinewave flickering spot 
of 0.7 deg diameter and a range of frequencies from 2 to 

24 Hz 

4Hz 

FIGURE 3. G-potentials presenti in pseudo ~~imensional phase space. Shown are the responses to a ii&t spot of 0.7 
deg diameter. Stimulus frequencies are indicated in the figure. The X-, y- and z-axes represent the G-potential value, the delayed 
G-potential and the stimulus value, respectively. The data are normalized to the range O-1 and oriented so as to show the 

shape of the attractor most clearly. 
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FIGURE 4. Phase space plots represented in a cylindrical coordinate system. The z-axis has the same values as in Fig. 3, but 
the x- and y-axes are transformed according to equations (la) and (1 b) of the text, and renormalized appropriately. The light 
stimulus consisted of a circular spot, sinusoidally modulated in intensity at a contrast of 0.6. The mean luminance level was 
530 cd/m*. (A) Stimulus frequency 2 Hz, (B) stimulus frequency 4 Hz and (C) stimulus frequency 8 Hz. Spot diameters: upper 
row, 0.7 deg; middle row, 0.5 deg; lower row, 0.2 deg. Insets in each graph present the corresponding G-potentials in the time 
domain, averaged over l&SO stimulus periods, depending on the frequency of stimulation. All attractors in (A) and (B) are 
shown at the same orientation of the coordinate system. The attractors in (C) are tilted 50 deg further in order to show their 
shape more clearly. Notice the change of attractor shape with the change of spot size. In (C) the fast changes of the averaged 
G-potential for both a 0.7 deg (top) and a 0.5 deg (middle) spot diameter are correlated with the shape of the attractor, which 

is characteristic for strong nonlinearities. 

24 Hz. The coordinate system has linear axes and the 
range is normalized. For frequencies around 4-8 Hz the 
structure of the attractor is clearly visible. The attractor 
is a locus in phase space to which most trajectories 
approach and it can be seen in Fig. 3 for stimulus 
frequencies from 4 to 16 Hz. Attractors describe dynam- 
ical equilibrium states of a system. We attempt below to 
develop a model, which not only mimics the changes of 
the G-potential in time, but also shows a similar struc- 
ture of the attractor in phase space. 

In Fig. 4 the linear coordinate system of the phase 
space of Fig. 3 was transformed into a cylindrical 
coordinate system, which makes it possible to see the 
structure of the attractor for higher and lower stimu- 
lation frequencies. 

It is interesting that the thickness of the tori, which is 
correlated to noise or to oscillations around the tori, was 
much smaller for 8 Hz than for the resonance frequency 
of 16 Hz or for other frequencies (Fig. 3). This makes it 
sensible to differentiate between two kinds of oscillation: 
a slow oscillation with a resonance frequency of about 
16 Hz, which is in most cases entrained by the frequency 
of stimulation and another, faster, oscillation correlated 
with the own (natural) frequency of the nonforced 
system. The faster oscillation has only one period for a 

stimulus frequency of 8 Hz (spot size 0.7 deg) and the 
number of periods increases by changing the spot size 
and stimulus frequency. The fast oscillations are only 
partly synchronized with the stimulus, as one can see by 
comparing the averaged G-potential to the phase space 
attractor. For a stimulus frequency of 16 Hz one can see 
in the phase space representation (Fig. 3), that the fast 
oscillations are not synchronized to the stimulus- 
entrained oscillations. For 4 Hz stimulation, there are 
four periods of the fast oscillations synchronized with 
the stimulus (Fig. 4), but the first period consists of 
several even faster oscillations which are non-synchro- 
nized (although they have the same frequency as the fast 
oscillations for the 16 Hz stimulus, i.e. about 144 Hz). 
For 2 Hz the situation is more complicated; there are fast 
oscillations (of about the same frequency of 144 Hz) and 
several slower, complex oscillations that are difficult to 
identify (Fig. 4). 

For the relatively large spot size of 0.7 deg and for 
higher frequencies of stimulation, e.g. 24 Hz, a frequency 
doubling appeared [Fig. l(A)], which dominates all other 
oscillations. This frequency doubling is clearly visible in 
the time domain as well as in the power spectrum 
[Fig. 2(A)]. It can also be observed for a spot size of 0.5 
deg, but not for 0.2 deg [Fig. l(B, C)]. These changes in 
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the G-potential are not correlated with spikes. This effect 
of a decorrelation between spikes and fast oscillations 
also takes place for a 0.2 deg spot and a 16 Hz stimulus 
frequency [Fig. l(C)]. Changing the light spot size from 
0.7 to 0.2 deg generally causes a stronger desynchroniza- 
tion of the fast oscillations which can be observed in 
phase space (Figs 3 and 4). 

In Fig. 4 the influence of spot size change is shown 
more systematically in phase space for three frequencies 
of stimulation: 2 Hz [Fig. 4(A)], 4Hz [Fig. 4(B)] and 
8 Hz [Fig. 4(C)]. The changes in phase space can be 
compared to the averaged G-potential for the same 
parameters of stimulation (Fig. &insets). For a stimu- 
lus frequency of 8 Hz and a spot size of 0.7 and 0.5 deg, 
the increase and decrease of the slow oscillations are fast. 
This finds its expression in the almost rectangular shape 
of the attractor [Fig. 4(C), upper and middle part]. This 
shape is characteristic for relaxation oscillations (Gras- 
man, 1987). A further decrease of the spot size (to 0.2 
deg) caused a change in the attractor shape and in its 
thickness [Fig. 4(C), lower part]. For other stimulus 
frequencies the attractors are also rounder and only 
some parts of them are thin. These properties are 
reflected only in part in the averaged G-potential. For 
example, for the most nearly linear case (2 Hz, 0.5 deg) 
the attractor shows that there is a very regular increase 
and decrease of the slow potential changes from one 
period of stimulation to the next. This is difficult to see 
in the average potential. It is also impossible to say from 
the averaged G-potential whether the fast oscillations 
are synchronous with the stimulus, e.g. compare the 
average G-potential for stimulation with 4 Hz and a spot 
size of 0.7 deg with that for the other spot sizes of 0.5 
or 0.2 deg. 

The van &r Pol oscillator as a first approximation of the 
G-potential responses to sinusoidal stimulation 

As was mentioned previously the G-potential shows 
evidence of nonlinearities which are dependent on the 
parameters of stimulation. During darkness this cell was 
spontaneously discharging action potentials and its G- 
potential showed synchronous oscillations. The spon- 
taneous activity indicates that the system has 
self-oscillatory properties. Such properties can be de- 
scribed by the nonlinear van der Pol differential 
equation. We can treat the light stimulus as the external 
force of the van der Pol oscillator, which is a special 
(simple) case of the following more general non-linear 
differential equation (Cartwright & Littlewood, 1945): 

X” + f(x)x’ + g(x) =p(t) (2) 

where f, g, p are smooth functions, p(t) is the periodic 
external forcing term, f(x) is the damping function, 
which should be symmetric around the origin and satisfy 
the condition: f(x) > 0 in the limit for 1x(+ CO. This 
means that the damping must be positive for large 
1x1. g(x) is responsible for the “restoring” effect and 
should have the same sign as x. 

This general equation has suitable properties for 
practical application because every trajectory is bounded 

as t --+a (Cartwright & Littlewood, 1945). This means 
that for any set of initial conditions the solution of the 
equation, x(t), stays finite. The simplest case having 
these properties is the van der Pol equation: 

x” - k(1 - x2)x’ +x = b cos(ot) (3) 

where k is a positive coefficient (not too small, e.g. 4) 
which determines the nonlinearity; b is the amplitude of 
the forcing term; o = 271. f, if ,f is the frequency of the 
forcing term. 

We have investigated whether this relatively simple 
three-dimensional model can account for the observed 
temporal properties. More specifically, can the van der 
Pol equation reproduce the coexistence of stimulus-syn- 
chronous oscillations and other spontaneous oscillations 
which change their phase and frequency for different 
stimulus parameters. The following theoretical analysis 
of the parameter space for the van der Pol equation is 
based on the work of Cartwright and Littlewood (1945) 
Stocker (1950) Hayashi (1964) Levi (1981) and 
Grasman (1987). 

Changing the amplitude b of the stimulus in a certain 
interval [b,, b2] (where 6, is small, near 0, and b, close to 
but 3) at a constant frequency, and for large k, we can 
observe two alternating types of behaviour: type A is 
associated with a single mode, and type B with two 
oscillations that are different in frequency. The interval 
[b,, b,] can be subdivided into a finite sequence of 
subintervals Aj and Bi separated by small gaps. In an 
interval of type B, complex irregular behaviour can also 
be observed. In the small gaps between the A- and 
B-type intervals a series of bifurcations appears. In the 
intervals Ai, the stable solution has a period (2n + l)T, 
where integer n = n(i) is proportional to k, and depends 
on the interval number of A,. In the intervals Bi a 
solution with a period of (2n - 1)T appears in addition 
to the solution with a period of (2n + 1)T. 

By changing the frequency f in the forcing term relative 
to the natural, resonance frequency f, (of the nonforced 
van der Pol oscillator)--a so-called detuning, character- 
ized by the detuning parameter (f - fO)/k-one can 
observe several different modes. In this case we assume 
a small k value, which determines “almost harmonic 
oscillations”. In terms of the relative amplitude of the 
oscillations r2 (see Stocker, 1950; Hayashi, 1964) we get 
complete entrainment for r2 > f (so-called phase or 
frequency locking). For r’ < i oscillations are doubly 
periodic+orresponding to the natural frequency f, and 
the forcing frequency f. This leads to combined oscil- 
lations or, if f/f0 is irrational (incommensurate frequen- 
cies) it leads to quasiperiodicity, which is characterized 
in the Fourier spectrum by peaks for both f and f,. When 
the amplitude of the forcing term is large enough, the 
entrained periodic solution becomes unstable and when 
the detuning parameter cf - f,)/k increases the other 
modes of oscillation will be possible. Both the natural 
and the forced mode will be mixed. These modes will 
depend on the initial conditions and a hysteresis 
phenomenon is observed. The other possibility is a 
situation where two different modes coexist. This leads 
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to random behaviour, which is characterized in the (5) changing amplitude of the fast oscillation rela- 
Poincark section as having a strange attractor. This tive to the slower one; 
situation is characterized by a broad spectrum and (6) a characteristic change in the phase between 

continuous changes. slow and fast oscillations. 
In our case we have both fast (relaxation) oscillations, 

which are the own oscillations of the system without a 
forcing term, and slow oscillations, which are synchro- 
nized and induced by the forcing term (our stimulus). 
The behaviour of this system depends strongly on its 
effective nonlinearity k, which one has to compare with 
some coefficient k,,, and k, is a function of b and f 
(Cartwright & Littlewood, 1945). As a consequence, we 
can have different patterns of oscillation which are 
dependent on the parameters of stimulation. In the 
simplest case, i.e. for a stimulus frequency of 8 Hz and 
a large spot (0.7 deg), the fast oscillations are strongly 
damped and synchronized with the stimulus. In some 
other cases, as for stimulation at a frequency of 4 Hz, 
and a spot size of 0.7 deg, we also get synchronization 
between fast and slow oscillations, which one can see as 
regular peaks of fast oscillations in phase space (Fig. 4). 
In most cases, however, the fast oscillations are not 
synchronized with the stimulus. Depending on the non- 
linearity parameter k the fast oscillations are either local 
or extend to a larger part of the stimulus period. 

Simulation of the van der Pal equation 

In order to investigate whether the van der Pol 
oscillator could describe the observed changes of G:po- 
tential dynamics for different frequencies and spot sizes 
we have performed numerical simulations on a digital 
computer (DEC 5000). 

The simulation results shown in phase space (Fig. 6) 
exhibit a characteristic change of phase of the fast 
oscillation relative to the slower one which is synchro- 
nized with the stimulus. At first we fitted the parameters 
of the van der Pol equation to get a characteristic “one 
period” fast frequency excitation for the stimulation 
frequency of 8 Hz and a spot size 0.7 deg [Fig. 5(A)]. We 
obtained the following parameters: k = 4, a = -0.8 and 
b = 0.8. Decreasing the frequency of stimulation causes 
the fast oscillations to have more and more periods in 
one period of the phase locked oscillations, which is in 
agreement with our experimental results [cf. Fig. l(A) for 
2, 4 Hz with Fig. 5(A)]. Increasing the frequency of 
stimulation without changing the other parameters in 
the van der Pol equation would cause the fast oscil- 
lations to disappear, which is not in agreement with our 
results. To fit our experimental results the coefficient of 
nonlinearity k must be changed for different frequencies, 
which results in characteristic oscillations for 16 Hz and 
for 24 Hz [Fig. 5(A)]. But this change alone does not give 
the strong resonance effect observed for 16 Hz stimu- 
lation. Another coefficient, b, must be changed to get an 
amplitude increase in our response (b was changed from 
0.8 to 1.4 for 16 Hz). For a stimulus frequency of 24 Hz 
and for the parameter values b = 0.8, k = 1.75 and 
a = -0.8 frequency doubling was observed in the simu- 
lations which is in agreement with the measurements. 

The van der Pol equation was modified in comparison 
to Cartwright and Littlewood (1945) and converted to 
two first-order equations for simulation purposes: 

x’=k(y+x-$xX3) (44 

Y ‘- - -t x + a + b cos(ot). (4’4 

The fourth-order Runge-Rutta method with adaptive 
step size was used for numerical integration of the 
equation. We added a bias of the forcing term by 
introducing a coefficient a in the above equation, where 
laf c 1 (Hayashi, 1964). This causes a time shift of the 
fast oscillation relative to the slower one. In the simu- 
lations the frequency of the forcing term (light stimulus) 
and the values of a, b and k were changed to simulate 
the changes in the stimulus parameters (Fig. 1). 

By choosing the coefficients of our model, it was possible 
to obtain: 

(1) coexistence of two kinds of oscillation, a slow 
and a faster one; 
(2) synchronization of the slow oscillation changes 
with the stimulus; 
(3) an increase and decrease of the regularities in 
the fast oscillations; 
(4) changing amounts of fast oscillation periods in 
each stimulus period; 

Changes of spot size were simulated by changing the 
value of the nonlinearity parameter k. A decrease of the 
spot size is simulated in our model by a decrease of k. 
For 16 and 24 Hz stimulation a decrease of the light spot 
size from 0.7 to 0.2 deg was simulated by a change of k 
from 1.75 to 1.4 (0.5 deg) and 1 (0.2 deg spot size). Such 
changes generally result in a decrease of the damping for 
fast oscillations and also increase their irregularities. 
This can be seen both in the experimental results and in 
the simulation results [Figs l(B, C) and 5(B, C)]. For a 
stimulus frequency of 8 Hz and a smaller spot size, the 
coefficient k was carefully chosen in order to obtain 
instabilities in the generation of one or two periods of 
fast oscillations: k = 3.68 for a spot size of 0.5 deg, and 
k = 3 for a spot diameter of 0.2 deg. For the lower 
frequencies of 2 and 4 Hz, the values k = 3.7 and k = 3 
were used, respectively. These values of k caused an 
increase of the number of periods for the fast oscil- 
lations. The uniform spread of fast oscillations for the 
whole period was not reproducible for these simulation 
parameters. To simulate the decrease of the slow oscil- 
lation’s amplitude, coefficient b (the effective amplitude 
of the stimulus) was decreased from 0.8 to 0.35. To 
mimic the effect that fast oscillations spread to a larger 
part of the slow period, coefficient a was changed. The 
latter coefficient can be interpreted as a threshold (or 
adaptation level) for the fast oscillations. Both these 
changes suggested that some new effects are involved for 
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FIGURE 5. Simulation results. The van der Pol equation was used to simulate the G-potential responses of the On-centre 
X-type ganglion cell shown in Figs 14. Spot diameters and stimulus frequencies as indicated in the figure. In each box the 

top trace presents the simulated G-potential and the lower trace the stimulus signal. 

the spot size of 0.5 deg and the frequency of 2Hz. 
Decreasing the spot size to 0.2 deg causes an increase of 
the low frequency mod~ations and could be simulated 
with more “predictable” parameters: b = 0.8 and k = 3. 

An example of the characteristic increase of the amount 
of fast oscillations with decreasing frequency of stimu- 
lation is shown in phase spate in Fig. 6. For a stimulus 
frequency of 8 Hz the attractor with a shape similar to 
that for relaxation oscillations is presented at the bottom 
of the picture. The attractor is thin when it lacks the fast 
o~illations, and it becomes thicker even if there is only 

one period of the fast fluctuations. If the fast oscillations 
cover almost the whole period, as is shown for the model 
in the upper part of Fig. 6 (2 Hz stimulation, spot of 0.5 
deg), the attractor becomes very thick. 

DISCUSSION 

Averaging rnef~~~ srn~~t~ wt the fast 0~c~I~Qt~~n~ 

Using Wiener’s theory of non-linear analysis, Naka 
and Sakai (1991) interpreted their results to mean that 
the dynamics of the G-potential in ganglion cells is 
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(Cl 

8Hz 

FIGURE 6. Phase space plot of the simulated G-potential. (A) Spot 
size 0.5 deg, stimulus frequency 2 Hz (the most linear case); (B) spot 
size 0.7 deg, stimulus frequency 4 Hz; (C) spot size 0.7 deg and stimulus 
frequency 8 Hz (the most nonlinear case). The width of the attractor 

can be seen to depend strongly on the parameters of stimulation. 

optimal for triggering spike discharges. Lankheet et al. 
(1989b) described the possibility of inverse modelling of 
the spike G-potential on the basis of output spike trains. 
This may appear to suggest that there is no significant loss 
of information when the G-potential (an anaiogue signal) 
is converted into spike discharges (a point process). In a 
way the present analysis goes into the opposite direction, 
because it shows that the G-potential exhibits fast oscil- 
lations which are not always expressed in the spike trains. 
In most cases reported in the literature the G-potential is 
averaged and spike trains are summarized in the form of 
PST-histograms, Fourier analysis (auto-correlation), or 
cross-correlation (in a special case to produce a series of 
kernels). Averaging techniques do not preserve infor- 
mation about nonperiodic or local non-succored 
oscillations (see also Kruger & Becker, 1991). Power 
spectrum analysis (e.g. Fig. 2) can only be used to find 
fast oscillations in very special conditions, where they 
are generalized for a full period of stim~ation 
(Przybyszewski, 1991). In our power spectra the fast 
oscillations are not always visible because: 

(1) they are mixed with noise; 
(2) they do not usually cover the full period (lo- 
cality) and the power spectrum averages all fre- 
quencies within the temporal window of analysis; 

(3) they are usually not locked to the stimulus, 
which means that they can compensate each other 
in the power spectrum. 

The same factors obscure fast oscillations in the 
averaged G-potential (insets in Fig. 4). For example, one 
can see many small peaks in the averaged G-potential for 
a stimulus of 16 Hz. But these may in fact be caused by 
periods of strong non-synchronized fast oscillations, as 
is evident in the phase space plot (Fig. 3). Inspection of 
such oscillations can be a~omplished in phase space, or 
by a wavelet analysis of the signal for a complete family 
of different filters (Przybyszewski, 1991). 

Generality of fast oscillations in retinal cells 

The existence of different oscillations can also be seen 
in other neurons by a close inspection of several figures 
presented in different publications: e.g. in cat ganglion 
cells (Lankheet et al., 1989a), in amacrine cells of the cat 
(van de Grind, 1981) and catfish (Sakai & Naka, 1991) 
in ganglion and bipolar cells of the turtle (Marchiafava, 
1983). The oscillations were often interpreted as fre- 
quency doubling [van de Grind, 1981; Sakai & Naka, 
1990; our Fig. l(A)], but a re-analysis of their shapes 
shows that there might be other causes than full-wave 
rectification as well [Fig. l(A, B), 8 Hz stimulation]. 
Wunk and Werblin observed postsynaptic potentials in 
the tiger salamander retina while they polarized the 
ganglion cell membrane with extrinsic currents and 
stimulated either the centre or the surround of the cell’s 
receptive field. During centre illumination ganglion 
cell responses had much stronger oscillations of the 
membrane potential compared with the case of illumina- 
tion of the surround (Wunk & Werblin, 1979). They 
identified some of the peaks in the ganglion cell activity 
in EPSPs and IPSPs induced by bipolar cell and 
amacrine cell-input. There was no spike activity in their 
recordings because the spikes disappeared after cell 
preparation. 

Our intracellular recordings from cat ganglion cells 
show clear and stable spike discharges and they therefore 
allow a comparison of the G-potentials and spike dis- 
charges. The fast oscillations we observed are not di- 
rectly correlated with spikes, because they can be 
observed between spike bursts for lower frequencies of 
stimulation (2 Hz) as well as between spikes for higher 
frequencies (16, 24 Hz-different spot sizes). Thus 
they cannot be the direct cause of oscillations in neurons 
in the LGN (Podvigin, Jokeit, Pisppel, Chiz & Kiselyeva, 
1992) or cortex of the cat (Jagadeesh et al., 1992). 
Conversely, oscillations found in retinal horizontal 
cells of the cat retina (Foerster et al., 1977) do not 
appear to express themselves directly at the level of the 
ganglion cells. This means that oscillations appear to 
arise de notlo at several places along the visual pathways 
and might thus be a rather general phenomenon in 
neurons (Llinas, 1990). In this connection it is interesting 
that they are also found in arthropods (Kirschfeld, 
1992). 
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Models describing oscillations in the nervous system 
Hodgin-Huxley equation. Several papers describe the 

structure of attractors for periodically forced neural 
oscillations. Aihara, Matsumoto and Ikegaya (1984) and 
Aihara, Numajiri, Matsumoto and Kotani (1986) found 
synchronization, as well as quasi-periodic and chaotic 
oscillations in a squid giant axon stimulated by a 
sinusoidal current applied through an internal electrode. 
This behaviour could be predicted on the basis of the 
Hodgkin-Huxley equations (Aihara et al., 1984). Similar 
results were obtained for an on~hidium giant neuron 
(Hayashi, Ishizuka, Ohta & Hirakawa, 1982). It is more 
difficult to observe different bifurcations in the retina, 
because in most cases slow oscillations are synchronized 
with the stimulus. However, for 24 Hz we observed 
frequency doubling. 

The integrate-and-fire model and its modljication. Inte- 
grate-and-fire models are represented by first-order 
differential equations with a threshold (Keener, Hoppen- 
steadt & Rinzel, 198 1). The responses of such models to 
periodic stimuli can be: phase locking (oscillatory), 
aperiodic, or chaotic. In such a model the coexistence of 
two different stable oscillations is impossible. The same 
is true for the coexistence of stable phase-locked re- 
sponses with different frequencies (more exactly rotation 
number) for certain parameter values (the hysteresis 
effect). In an analysis of different models for spike 
generation, Lankheet et al. (1989a) showed that the 
integrate-and-fire model properties do not suffice to 
reproduce the observed spike patterns for cat retinal 
ganglion cells. A major conclusion from their analysis 
was that at least two dynamic processes influence the 
firing decision. 

In a frequency analysis of the G-potential we found 
that for spot sizes of 0.7 and 0.2 deg and a frequency of 
stimulation of 16 Hz the stimulus frequency dominates 
in the power spectrum. This can be interpreted as a 
resonant case. It is interesting that in the spike generat- 
ing model of Lankheet et al. (1989a) the time constant 
of the slow threshold adaptation mechanism was about 
63 msec, which corresponds to a frequency of around 
16 Hz. This frequency is also present in our power 
spectra (Fig. 2) even when we used other parameters of 
stimulation. These findings can be interpreted as a 
tuning of the spike generating mechanism to the res- 
onant frequency of some component of the retina. 
Similar effects of resonance were observed in other 
species. Power spectrum analysis of amacrine cells in 
catfish retina (Sakai & Naka, 1990) show that 35 Hz is 
a resonance frequency for these cells. 

In our analysis we assume that at least two processes 
influence the G-potential properties. If we take the spike 
generating mechanism into account at least one more 
process, correlated with a refractory threshold, is added. 
It is also possible that the higher frequencies of oscil- 
lation, as observed in the power spectra, arise from an 
interaction between the G-potential and spike generating 
mechanisms. Taking the Bonhbfer-van der Pol equation 
(FitzHugh, 1955; Braaksma & Grasman, 1991) as a 
model for the spike generating mechanism we get a 

coupling of two nonlinear oscillators, which could cause 
interactions between the natural frequencies of these two 
systems. 

van der Pol oscillator. In our experimental results we 
see two coexisting stable oscillations: one locked to the 
stimulus and the other faster and non-synchronized. We 
used the van der Pal oscillator as a minimal model with 
the properties described above. This model assumes that 
the unforced system has self-oscillatory properties, 
which in physiological terms relates to the existence of 
spontaneous activity in the absence of a stimulus (in 
darkness for on-centre ganglion cells). The coexistence of 
two different stable oscillations is essential for this 
analysis and it is an important property of the van der 
Pal equation. As was shown in Figs 1, 3, 4 and fast 
oscillations are usually not synchronized with the stimu- 
lus, so as such they are often treated as noise. Comparing 
the G-potential for a stimulation frequency of 8 Hz with 
that for other stimulus parameters shows smaller noise 
(Fig. 3). This fact can be seen even better in phase space, 
by comparing the width of the tori for different stimu- 
lation conditions. This property can be observed in our 
simulated deterministic model, where the changes of 
phase during stimulation are characteristic for the forced 
van der Pol oscillator (Fig. 6). 

The slow oscillations disappear for stimulation fre- 
quencies higher than 16 Hz and for a small spot size (0.2 
deg). This effect was not only observed for the frequency 
of 24Hz, as shown here, but also for 32 and 40 Hz. 
These facts can be interpreted in terms of our model, by 
assuming that the higher frequencies of stimulation and 
the smaller spot sizes influence the system’s nonlinear 
properties (by decreasing the coefficient k). This causes 
an increase of the amplitude of the natural oscillations 
and indirectly influences the effect of the stimulation 
frequency. A similar effect was observed for 2 Hz stimu- 
lation and a spot size of 0.5 deg, where the amplitude of 
stow oscillations suddenly becomes smaller and the fast 
oscillations are dominating. Decreasing the stimulation 
frequency from 16 Hz downwards causes many subhar- 
monies to appear, which can be interpreted as an indirect 
increase in nonlinearity (we did not change k, but the 
influence of k also depends on o and 6). This has less 
influence for a 0.2 deg spot size, which supports the idea 
that a decrease of the spot size has a linearization 
influence. 

By careful variation of the model parameters it proved 
possible to simulate some of the irregularities in the 
G-potential as well. As an example, compare the exper- 
imental data of Fig. 1 with the model data in Fig. 5 for 
a stimulation frequency of 16 Hz and a spot size of 0.5 
deg. However, for some parameter values of the stimu- 
lus, e.g. 24 Hz and a spot size of 0.5 or 0.2 deg, the 
irregularities in the experimental data are larger than in 
the model. Another effect of the model that should be 
improved is the change in G-potential for a decreasing 
spot size at low frequencies of stimulation. For example, 
at 2 Hz a decrease of the spot size from 0.7 to 0.5 deg 
caused fast oscillations for the full period of stimulation 
(Fig. 1). This could only be mimicked very roughly by 
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changing coefficient a from - 0.6 to - 0.1 and b from 0.8 
to 0.35 (Fig. 5). A similar but less severe discrepancy 
holds for 4 Hz, A further decrease of the spot size from 
0.5 to 0.2 Hz causes another unexpected effect, viz. a 
change of shape of the slow G-potential oscillations. 
These effects are not mimicked well by our model. 

We also observed higher frequencies in the power 
spectrum, e.g. close to the 9th ha~onic of 16 Hz, which 
is around 144 Hz, but this is not covered by our model 
either. This frequency seems to be correlated with the 
frequency of spikes in spike bursts and their source could 
be a closer coupling between the SGM and the G-poten- 
tial oscillator. As was discussed in the above theoretical 
analysis of the van der Pol equation, for some par- 
ameters of stimulation, irregular solutions exist. Such 
solutions are characterized by a so-called strange attrac- 
tor and by broad continuous changes in power spectra. 
The broad-band power spectra of the G-potential 
[Fig, 2(A, B, C)] have a continuous fall-off which can be 
approximated by f-‘.“, This property may be caused by 
noise or by a chaotic process. The f -‘.’ power law might 
be interpreted as the self similar variation on different 
time scales, which is correlated with a fractal process 
(Goldberger & West, 1987). 

Comparison with extraceii~Iar recordings from gang/ion 
cells 

The present results emphasize an aspect that has 
hitherto been covered, but they are otherwise in general 
agreement with other findings on the G-potential or 
extracellular spike response of cat ganglion cells. For 
example Lankheet et at. (1989a, b) report that the ampli- 
tude of the first harmonic of the G-potential (the slow 
stimulus-locked oscillations) has a maximum at a tem- 
poral frequency of around 16 Hz for larger spot sizes and 
at lower frequencies for smaller spot sizes. Frishman, 
Freeman, Troy, ~hweitzer-Tong and Enroth-Cugell 
(1987), recording from the optic tract, used gratings as 
a stimulus under photopic conditions. They found that 
the X-cell’s responsivity was essentially constant at 
temporal frequencies from 1.5 to about 39 Hz. 
Derrington and Lennie (1982) reported that the sensi- 
tivity at the optima spatial frequency was higher at a 
temporal frequency of about 10 Hz than at lower or 
higher temporal frequencies. Griisser (1971) found that 
photopic stimulation of the receptive field centre with 
sinusoidally modulated small light spot(s) gives maxi- 
mum responses for frequencies between 8 and 12.5 Hz, 
If the size of the st~ulating spots (the stimulation area) 
in the receptive field centre decreases, the response 
amplitude also decreases but not in a linear manner. 
Griisser (1971) found a hysteresis effect during continu- 
ous increase and decrease of the light spot diameter. The 
response amplitude depended on the direction of change. 
These results support the idea that clear nonhnearities 
exist in the receptive field centre of cat ganglion cells. 

Enroth-Cugell and Robson (1966) proposed the 
classification of ganglion cells into X- and Y-types on the 
basis their linear (nonlinear) spatial summation proper- 
ties for appropriate spatial and temporal frequencies and 

a relatively low contrast. On the basis of our recordings 
and sim~ation of the G-potential it appears that X-type 
ganglion cells also show nonlinearities. These nonlinear- 
ities, which are visible in the temporal structure of the 
soma potential, depend on the stimulation parameters. 
Not only contrast but also spot size (spatial frequency) 
and temporal frequency of stimulation are important. 
X-centre ganglion cells may evoke at least two different 
kinds of oscillation. The first one, their own or natural 
frequency is correlated with properties of retina circuitry 
in the stimulus-free situation. These oscillations are 
called “fast” in this paper. They are relaxation oscil- 
lations, which can be best observed for 24Hz stimu- 
lation [Fig. l(A)]. The shape of the “slower” oscillations, 
depends more strongly on the parameters of stimulation. 
The slower oscillations are relaxation oscillations for 
8 Hz [0.7 or 0.5 deg spot size-Figs l(B, C) and 41 but 
a decrease in stimulation frequency and spot size 
increases their linearity [Fig. l(B, C)]. 

Strong nonlinear oscillations of the G-potential can 
possibly be detected in extracellular recordings on the 
basis of bursting. Burst regularity may also be analysed 
with the wavelet method (Przybyszewski, 1991). This 
kind of analysis has a physiological meaning. One may 
assume that an impor~nt role of X-type cells is to 
encode a precise message about contrast, spatial and 
temporal properties of the stimulus. If the stimulus tunes 
in with the resonance of X-cell circuity (for the fast 
oscillation type), the G-potential has its maximum non- 
linear shape, which can cause a high speed threshold 
crossing and thus generate a relatively precise timing of 
spike bursts. Such a message or coding mechanism 
(Koenderink & van Doorn, 1973) might be repeated on 
higher levels and will be resistive to random fluctuations. 

Possible anatom~&a~ andphysio~og~~a~ basis of ~-potential 
oscillations 

Some or all of the uncovered oscillations might be 
caused by intrinsic properties of the ganglion cell mem- 
brane. However, it seems more likely that at least some 
of the oscillations are network properties. There are 
several feedback loops in the retina that might be a 
source of oscillations under specific circumstances or for 
a specific combination of stimulus parameters. These 
include: (1) feedback from horizontal cells to cone-pedi- 
cles (Chun 8c Wassle, 1989); (2) feedback from amacrine 
cells to bipolar cells or reciprocal connections in the 
inner plexiform layer (Kolb, Nelson & Ma~anni, 1981); 
(3) feedback from the inner plexiform layer to the outer 
plexiform layer through interplexiform cells (Kolb & 
West, 1977). It has been suggested that the small oscil- 
lations of about 40Hz which can often be found in 
cone-dominated horizontal cells are a consequence of the 
first mentioned feedback circuit (Foerster et al., 1977). In 
view of their properties (op tit) we assume that if they 
play a role at the level of ganglion cells it is probably a 
minor one that can only be uncovered by high intensity, 
high temporal contrast, large-field stimulation, The third 
possibility is very hard to evaluate at present, because 
nothing is known about the physiological properties of 



874 A. W. PRZYBYSZEWSKI ef al 

interplexiform cells. Perhaps loops at or near the 
ganglion cell in the inner plexiform layer are the safest 
bet. The oscillations in G-potentials might be the result 
of complex interactions between different subsystems 
like membranes, cells or small neural networks (cell 
assemblies), with stimulus-dependent shifts in domi- 

nance. The functional properties of these subsystems can 
probably be studied in more detail with a generalization 
of the method developed by Hochstein and Shapley 
(1976) to analyse the subunit structure of Y-type 
ganglion cell receptive fields. 

In conclusion, our results show that the G-potential 
oscillates in various modes which are dependent on the 
stimulus parameters. A description in terms of a forced 
van der Pol oscillator summarizes many of the intricate 
oscillatory properties of the G-potential. Oscillatory 
behaviour of this type or variants of it are probably 
ubiquitous in the nervous system, which means that the 
proposed description might have a more general validity. 
As far as the retina is concerned one would eventually 
want an explanation in more mechanistic terms, which 
will probably require neuropharrnacological experiments 
to selectively suppress some of the many retinal feedback 
loops. The retina might prove to be a good model for the 
study of oscillatory phenomena, since it is accessible and 
well-studied in other respects. 
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