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Abstract. Motion capture (MoCap) technology becomes recently often used in 
neurological applications, especially for diagnosis of gait abnormalities. In this 
paper we present several different approaches to compute important features of 
gait abnormalities. This is a continuation of our previous experimental results 
concerning examination of Parkinson’s disease (PD) with bilateral subthalamic 
nucleus stimulation (DBS) patient in the MoCap laboratory. At first, we calcu-
late mean changes of the gait as effects of medication and DBS. We present 
these changes as phase plots suggesting different dynamics in different patients. 
In the second part, we apply AI approach related to application of the Rough 
Set Theory in order to generate decision rules for all our patients and all expe-
riments. We have tested these rules by comparing training and test sets.   

Keywords:  MoCap, Deep Brain Stimulation (DBS), reducts, information table, 
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1 Introduction 

There were already many studies using MoCap measurements for diagnosis of human 
gait abnormalities related to neurological diseases as presented in references [1-4]. In 
these papers several different indexes were proposed and verified on experiments with 
neurological patients. They found that these indices might to be useful in diagnosis of 
neurological gait abnormalities, but different groups used different MoCap platforms 
and therefore algorithms for processing MoCap data were not always consistent. Also 
some indices were specific for patients with different neurological disorders. In our 
previous work, we have computed indexes for neurological gait abnormalities for PD 
patients with DBS [5]. We have found a strong influence of the medication and DBS 
on the decomposition index of knee and hip and hip and ankle. Therefore in the 
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present work we have concentrated analysis on the dynamics of the hip movements 
during the gait. However, the present approach is different as we proposed to use not 
only statistical analysis of certain indexes, but also AI approach base on the rough set 
theory. This new approach not only summarizes actual measurements but also gives 
some strong predictions that might better than standard indexes [1-4], which also 
predict effects of different therapies for PD patients. As effects of medications and 
DBS are very different in different patients making predictions is very difficult task 
and we present here only the preliminary data. 

2 Methods 

Our experiments were performed on 12 Parkinson Disease (PD) patients who have 
undergone the surgery based on implanting Deep Brain Stimulator (DBS) for improv-
ing their motoric skills. Dr. Kwiek performed surgeries in all patients taking part in 
our tests on in the Dept. of Neurosurgery Medical University of Silesia (MUS) in 
Katowice. They were qualified for surgery and observed postoperatively in the Dept. 
of Neurology MUS [6,7]. Both mentioned above medical departments as well as 
Polish-Japanese Institute of Information Technology (PJIIT) in Bytom are collaborat-
ing, as the group of Silesian Interdisciplinary Centre for Parkinson's Disease Treat-
ment. All experiments were performed in MoCap lab of PJIIT. PD patients  
performed normal walking under four experimental conditions defined by pharmaco-
logical medication and subthalamic nucleus (STN) electrical stimulation (DBS): ses-
sion S1 was related to MedOFFStimOFF, session S2: MedOFFStimON, session S3: 
MedONStimOFF, and S4:  MedONStimOFF. 

In the kinematic movement recording set-up were used 10-cameras and 3D motion 
capture system (Vicon). The 3D position of the patient was analyzed based on 39 
reflective markers (tracked at 100 FPS) placed on major body segments: 4 on Head, 5 
on Torso, 14 on left and right side of upper limbs and 16 on left and right sides of 
lower body.   

The structure of data is an important point of our analysis. It is represented in the 
form of information system or a decision table. We define after Pawlak [8] an infor-
mation system as S = (U, A), where U, A are nonempty finite sets called the universe 
of objects and the set of attributes, respectively. If a ∈ A and u ∈ U, the value a(u) is 
a unique element of V (where V is a value set). The indiscernibility relation of any 
subset B of A or I(B), is defined [8] as follows: (x, y) ∈ I(B) or xI(B)y if and only if 
a(x) = a(y) for every a ∈ B, where a(x) ∈ V. I(B) is an equivalence relation, and [u]B 
is the equivalence class of u, or a B-elementary granule. The family of all equivalence 
classes of I(B) will be denoted U/I(B) or U/B. The block of the partition U/B contain-
ing u will be denoted by B(u).  Having in discernibility relation we define the notion 
of reduct B�A is a reduct of information system if IND(B) = IND(A) and no proper 
subset of B has this property. In case of decision tables decision reduct is a set B�A of 
attributes such that it cannot be further reduced and IND(B) � IND(d). Decision rule 
is a formula of the form (ai1 = v1) ... ( aik = vk) � d = vd, where 1� i1 < ... < ik � m, 

vi  Vai . Atomic subformulas (ai1 = v1) are called conditions. We say that rule r is 
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applicable to object, or alternatively, the object matches rule, if its attribute values 
satisfy the rule. With the rule we can connect some numerical characteristics such as 
matching and support. In order to replace the original attribute ai with new, binary 
attribute which tells as whether actual attribute value for an object is greater or lower 

than c (more in [9]), we define c as a cut.  By cut for an attribute ai � A, such that Vai 

is an ordered set we will denote a value c � Vai. Template of A is a propositional 

formula vi � Vai. A generalized template is the formula of the form (ai � Ti) where 

Ti � Vai. An object satisfies (matches) a template if for every attribute ai (ai = vi) 

where ai � A.  The template is a natural way to split the original information system 
into two distinct sub-tables. One of those sub-tables consist of the objects that satisfy 
the template, the second one of all others.  Decomposition tree is defined as a binary 
tree, whose every internal node is labeled by some template and external node (leaf) is 
associated with a set of objects matching all templates in a path from the root to a 
given leaf [10].  

We will distinguish in the information system two disjoint classes of attributes: 
condition and decision attributes. The system S will be called a decision table S = (U, 
C, D) where U are objects, C and D are condition and decision attributes [8]. 

3 Results 

Recordings in four sessions: S1: MedOFFStimOFF, S2: MedOFFStimON, S3: Me-
dONStimOFF, S4: MedONStimON were performed in all PD patients.  The mean for 
all patients UPDRS III were improving with sessions, S1: 53+/- 4 (SE), S2: 35+/-6, 
S3: 22+/-3.5, S4: 18+/-3. Mean duration of three consecutive steps were similar be-
tween sessions: S1: 3.9+/- 0.2s (SE), S2: 3.6+/-1.6s, S3: 3.6+/-1.4s, S4: 3.5+/-1.2s. 
These values are similar to slow walk of the healthy person. In this study, we have 
limited our analysis to x-direction changes in the hip angles for left and right legs 
during three consecutive steady steps of all PD patients.  

A mean of the maximum x-direction hip angles extension (swing phase) for left (L) 
and right (R) sides were symmetric and improved non-significantly between sessions, 
S1: L: 29+/-3 deg (SE), R: 29+/-3 deg (SE), S2: L:32+/-3 deg, R: 33+/-3 deg, S3: L 
:34+/-3 deg, R: 36+/-3 deg,  S4: 35+/-4 deg R: 36+/-3 deg. We also found non-
significant improvements for the x direction hip angle flexion (stand phase) between 
sessions. However, we have observed more significant improvements in the maxi-
mum velocity of the x-direction hip angles extension (velocity in the swing phase): 
S1: L: 123+/-8.5 deg/s, R: 124+/-9.5 deg/s; S2: L: 142+/-6 deg/s, R: 140+/-8.4 deg/s; 
S3: L: 170+/-6.5 deg/s, R: 169+/-9 deg/s; S4: L: 173+/-6 deg/s, R: 174+/-9 deg/s; and 
hip angle flexion speed (velocity in the stand phase): S1: L: 71+/-85 deg/s, R: 75+/-5 
deg/s; S2: L: 82+/-6 deg/s, R: 93+/-6 deg/s; S3: L: 108+/-7 deg/s, R: 127+/-8 deg/s; 
S4: L: 120+/-9 deg/s, R: 120+/-9 deg/s.  

Notice that the most significant increase in velocities was between sessions S2 and 
S3, so it is an effect of medications. On the basis of mean values for all our patients 
we can say that medication as well as DBS are improving patients’ UPDRS and (hip) 
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movements velocities. The L-DOPA medications as well as DBS are well-established 
methods so one would expect such results. However, individual patients are very 
different and even in our small patients populations we have observed significant 
variability of the medication and stimulation effects. Therefore, we would like to 
learn, if we can group effects of medication and DBS therapies of individual patients 
into several categories? 

We have tried two different methods; the first one was related to the dynamical 
system analysis and the second to the machine learning approach. In our first method, 
we have compared phase plots for individual patients in four sessions S1 to S4.  

 

 

Fig. 1. Phase plots of the right against left x direction hip angles during the gait. Stimulation 
and medication extend trajectories and shift them up and to the right 

 

Fig. 2. Phase plots of the right against left x hip angles during walking. Notice a shift down and 
to the left related to the medication with extent of amplitudes and shift down as effect of DBS 
during MedON. 

 
 



 Rough Set Based Classifications of Parkinson’s Patients Gaits 529 

 

We have plotted the movement trajectories in the phase space as changes of the right 
hip x- angles as a function of the left hip angles changes during three steps stable 
walk. We have found different types of attractor changes as effect of medication and 
stimulations, as it is demonstrated on the following figures. 
 

 

Fig. 3. Phase plots of the right against left x hip angles during walking. Notice that for this 
patient effects of stimulation and medications are relatively small. Stimulation alone (S2) does 
not introduce significant changes in comparison to the control (S1). A significant changes in 
trajectories’ amplitude with shift up and to the right are effects of the medication (S3, S4).   

 

Fig. 4. Phase plots of the right against left x hip angles during walking. Notice very similar 
trajectories during sessions S1, S2 and S3. In contrast, interaction of medication and stimula-
tion (S4) strongly shifts trajectories up and into the right, but without changes in amplitudes.    
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Fig. 5. Phase plots of the right against left x hip angles during walking. In comparison to the 
control (S1), the stimulation alone (S2) or stimulation with medication increases magnitude of 
trajectories. But medication alone (S3) even stronger increases the magnitude  and introduce 
trajectories’ shift down and to the left . 

 

Fig. 6. Phase plots of the right against left x hip angles during walking. Notice a shift up with 
relatively small amplitude increase as effect of the stimulation (S2) or medication (S3) alone or 
both together (S4). 

In summary, stimulation and medication generally increase the amplitude and shift 
trajectories related to PD patients walk activity. It is not mainly related to patients gait 
speed, as mean gait durations were similar in all sessions. These plots might give 
basis for the dynamical model of the gait in different sessions but as demonstrated, in 
different patients changes of the particular trajectory are difficult to predict, as they 
are effects of the system complexity and basal ganglia regulatory numerous loops 
interactions. 
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3.1 Rough System Approach 

As described above we have used the RSES 2.2 (Rough System Exploration Program) 
[9] in order to find regularities in our data. At first our data was placed in the decision 
table as originally proposed by Pawlak [8].  In the row there are following attributes: 
P# - patient#, S# Session #, t-time, mxaL/mxaR/mnaL/mnaR – max/min Left/Right 
hip x-direction angles, mxVaL/mxVaR/mnVaL/mnVaR – max/min Left/Right hip x-
direction velocity, and UPDRS III as measured by the neurologist in the last column. 
There are data from two out of 12 patients in the table below: 

Table 1. A part of the decision table 

P# S# t    mxaL mxaR mnaR mnaL mxVaL mxVaR mnVaL   mnVaR   UPDR 

52  1  390    38.6    35.9    3.31    -0.65       1.14      1.55     -0.62        -0.65        52  
52  2  390    36.2    36.0   -0.14     -2.06      1.30      1.65     -0.89        -0.85        23 
52  3  330    44.8    47.9    -5.1      -3.79      2.12      2.25     -1.38        -1.58        13 
52  4   400   43.5    42.9    -3.8      -3.04      1.66      1.82      -1.0         -1.21        27  
53  1  320   17.7    17.0    -6.9      -6.33      1.49      1.32     -0.70        -0.80         53  
53  2   305    23.2   23.3    -1.47    -2.93      1.45     1.50      -0.75        -0.94        23  
53  3  290    32.6    24.3   -6.77    -13.99    1.85     1.87      -1.58        -1.79         10 
53  4   320   2 6.4    20.3   -8.70    -12.81    1.51     1.59      -1.27        -1.32          8  

The last column represents a decision attribute then we can write each row a decision 
rule as following: 

('Pat'=52)&( 'Sess'=1) &('time'=390)& (‘mxaL’=38.6)& … =>('UPDRS'=53)   (1) 

We read this rule as following: if for patient #52 and session S1 and time of his/her 
three steps 3.9 s and max hip x-direction angle equal 38.6 deg and … then his/her 
UPDRS III for this session is 53. 

Therefore we obtain 46 decision rules directly from our measurements, as two 
from our 12 patients did not have all four sessions. The main purpose of our analysis 
is to reduce these rules and to find regularities in our data. There are many possible 
steps as described in [9], below we will give some examples.  At first, we would like 
to make rules shorter and find that they apply to more than one case, e.g.: 

 ('Pat'=60)=>('UPDRS'=9[2]) 2     (2) 

 ('mnVaL'=-0.6756)=>('UPDRS'=32[2]) 2     (3) 

it reads that  Pat# 60 obtained UPDRS=9 in two sessions (eq. 2) and that min velocity 
of the left hip equal -0.6756 (- is related to the direction of gait) was related to 
UPDRS=32 in two cases (eq.3). In order to make rules more effective RSES can find 
optimal linear combinations of different attributes like: 

 'mxVaL'*0.594+'mxVaR'*(-0.804) (4) 

 'mx_aL'*0.046+'mn_aL'*(-0.587)+'mn_aR'*0.807 (5) 
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and these linear combinations may be added as an additional attributes. Also we can 
use discretization procedure [9] that divides attributes values into non-overlapping 
parts: 

('Pat'="(58.5,Inf)")&('Sess'="(2.5,3.5)"|"(3.5,Inf)")&('mnVaL'="(-0.9803, Inf)") => 
('UPDRS'=32[3]) 3                (6) 

That reads that for patients’ numbers above 58.5 and in sessions S3, S4 min hip veloc-
ity is -0.9803 or above then UPDRS equals 32 in three cases (eq. 6). 

As we have demonstrated above rules determining possible UPDRS are important 
but from patient and doctor points of view, the first message should be if the therapy 
(medication and/or DBS) is effective. In order to find it, we need to correlate our 
measurements with the session number that is related to the specific procedure. In this 
case the session number will be the decision attribute. In this case, we can obtain the 
following more general rules e.g.: 

 ('UPDRS'=52|53|43|56|87|45|58|30|60)=>('Sess'=1[11]) 11  (7) 

 ('UPDRS'=23|13|43|22|39|28|24|81|48|42)=>('Sess'=2[11]) 11  (8) 

 ('time'=440|305|280|365|310)=>('Sess'=2[6]) 6 (9) 

that means that session  S1 (MedOFFStimOFF) is related to high UPDRS in 11 cases 
(eq. 7), in session S2 (MedOFFStimON) UPDRS are generally smaller in 11 patients 
(eq. 8) and in this session (S2) the duration of three steps is between 2.8 and 4.4 s in 6 
cases (eq. 9). We can also find rules in which the duration of three steps are similar as 
in (eq. 10): 

('time'=350)&('Pat'=56|57|62|59)=>('Sess'=4[4]) 4      (10) 

Another important issue is how values of different attributes are changing in different 
sessions and patients. More variability is related to better attribute. Below there are 
two examples for: UPDRS and max hip left angles velocity. 

 

 

Fig. 7. Statistic for UPDRS  

 

Fig. 8. Statistic for max velocity L. hip  

But the main purpose of the ML approach is related to demonstration that proposed 
rules are enough universal to predict results from new patients on the basis of already 
measured patients (test-and-train scenario –[9]). In order to perform such test, we 
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have divided our data set into two parts: one 60% of our data was training set, and 
another 40% was set that we have tested. We have removed decision attributes from 
the test-set and compared them with attributes values obtained from our rules. We 
have used several different algorithms in order to find rules from training-set. The 
exhaustive algorithm [9] gave the best results described as the confusion matrix: 

Table 2. Confusion matrix for different session numbers (S1-S4) 

                Predicted 
 2 3 4 1 ACC 

2 2 0 0 1 0.66 

3 1 0 1 2 0.0 

4 1 3 1 0 0.2 

1 0 1 1 2 0.5 

TPR 0.5    0.0    0.33   0.4  
 
TPR: True positive rates for decision classes, ACC: Accuracy for decision classes: 

Coverage for decision classes: 0.75, 1.0, 1.0, 0.66 and global coverage=0.8421, and 
global accuracy=0.3125. A global accuracy was above 30% that means that we prob-
ably need to use more rules as for example combinations of many attributes or/end 
extend number of measured attributes for our analysis. However problem with this 
approach is that its results depend on which part of our measurements was taken as 
training and which part was tested. In order to test in exhaustive manner or all differ-
ent possibilities we have divided our experimental randomly set into 9 subsets:  

Table 3. Confusion matrix for the UPDRS as the decision attribute 

                        Predicted 
50,69.5 -Inf,29.5 42.5,50 34,42.5 69.5,Inf 29.5, 34 

50, 69.5 0.67 0.0 0.0 0.0 0.0 0.0 

-Inf, 
29.5 

0.0 1.67 0.0 0.11 0.11 0.0 

42.5,50 0.0 0.0 0.11 0.0 0.0 0.0 

34,42.5 0.0 0.11 0.0 0.0   

69.5, Inf 0.0 0.11 0.0 0.0 0.0 0.0 

29.5, 34 0.0 0.0 0.0 0.0 0.0 0.22 

TPR 0.44     0.72       0.11     0.0 0.0 0.22 

 
TPR: True positive rates for decision classes, ACC: Accuracy for decision classes: 

0.44, 0.72, 0.11, 0, 0, 0.22. Coverage for decision classes: 0.44, 0.602, 0.11, 0.11, 
0.11, 0.167 and global coverage=0.6, and global accuracy=0.917. UPDRS decision 
classes: (50, 69.5), (-Inf, 29.5), (42.5, 50), (34, 42.5), (69.5, Inf), 29.5, 34)., 69.5 

Actual  

A
ct

ua
l
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4 Conclusions 

We have presented comparison of the classical dynamical systems, and rough set (RS) 
approaches to process the MoCap data from PD patients in four different treatments. 
We have plotted effects of the medication and brain stimulation on individual patients 
gait trajectories. As these effects are strongly patient’s dependent they could not give 
enough information to predict new patient’s behavior. The RS approach is more uni-
versal as it gives general rules and predictions that cover individual patients reactions 
to different treatments as demonstrated for the UPDRS predictions.  
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