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Abstract. We still do not know exactly how brain processes are affected by 
nerve cell deaths in neurodegenerative diseases such as Parkinson’s (PD).    
Early diagnosis when symptom progressions are precisely monitored may result 
in improved therapies. In the case of PD, measurements of eye movements 
(EM) can be diagnostic. In order to better understand their relationship to the 
underlying disease process, we have performed measurements of slow (POM) 
eye movements in PD patients. We have compared our measurements and algo-
rithmic diagnoses with doctor’s diagnoses. We have used rough set theory and 
machine learning (ML), to classify how condition attributes predict the neurol-
ogist’s diagnosis. We have measured pursuit ocular movements (POM) for 
three different frequencies and estimated patients’ performance by gain and  
accuracy for each frequency.  We have tested ten PD patients in four sessions 
related to combination of medication and DBS treatments.  We have obtained a 
global accuracy in individual patients’ UPRDS III predictions of about 80%, 
based on cross-validation. This demonstrates that POM may be a good bio-
marker helping to estimate PD symptoms in automatic, objective and doctor-
independent way.  
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1 Introduction 

Our approach is to demonstrate an alternative to the mostly used statistical analysis of 
PD outcomes by using data mining and machine learning (ML) methods. We gave ex-
amples that our methods give a more precise description of individual patient’s symp-
toms and development. We may propose an individual treatment adjusted to different 
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patients that may lead more effectively than now to slowing of symptoms and im-
provements in quality of life.  Our analysis is proposed on the basis of learning algo-
rithms that intelligently process data of each patient in an individual and specific ways.  

Our symptom classification method follows the principle of the complex object 
recognition such as those in visual systems.  The ability of natural vision to recognize 
objects arises in the afferent, ascending pathways that classify properties of objects’ 
parts from simple attributes in lower sensory areas, to more complex ones, in higher 
analytic areas. The resulting classifications are compared and adjusted by interaction 
with whole object (“holistic”) properties (representing the visual knowledge) at all 
levels using interaction with descending pathways  [1] that was confirmed in animal 
experiments [2]. These interactions at multiple levels between measurements and 
prior knowledge can help to differentiate individual patient’s symptoms and response 
treatments variability in a way similar to a new, complex object inspection [3, 4]. 
Machine learning algorithms for analyzing   subtle signal variations will hopefully 
lead to better analysis of individual patients’ conditions. As it was demonstrated in  
[1, 3, 4] properties of the primates visual system can be well described by rough set 
theory, therefore we have applied the same concept to knowledge discovery from 
symptoms in PD. 

Based on their experience, intuition and at least partly subjective measurements 
neurologists are giving diagnosis of individual patients. They use “Golden Standard” 
by  estimation values of the Hoehn and Yahr scale and the UPDRS (Unified Parkin-
son's Disease Rating Scale). As different doctors are not always in the precise way 
perform exactly same procedure their diagnosis are partially subjective that may lead 
to different treatments. We propose to formalize the whole process and use the neu-
rologist’s diagnosis as decision attributes and their and our doctor-independent mea-
surements as condition attributes. 

2 Methods  

Our experiments were performed on ten Parkinson Disease (PD) patients who had 
undergone the Deep Brain Stimulation (DBS) surgery mainly for treatment of their 
motor symptoms.  They were qualified for the surgery and observed postoperatively in 
the Dept. of Neurology and got surgical DBS implementation in the Institute of Neu-
rology and Psychiatry [5].  We conducted horizontal POM (pursuit ocular movement - 
as explained below) measurements in ten PD patients during four sessions designated 
as S1: MedOffDBSOff, S2: MedOffDBSOn, S3: MedOnDBSOff, S4: MedOnDBSOn. 
During the first session (S1) the patient was off medications (L-Dopa) and DBS stimu-
lators was OFF; in the second session (S2) the patient was off medication, but the sti-
mulator was ON; in the third session (S3) the patient was after his/her doses of L-Dopa 
and the stimulator was OFF, and in the fourth session (S4) the patient was on medica-
tion with the stimulator ON. Changes in motor performance, behavioral dysfunction, 
cognitive impairment and functional disability were evaluated in each session accord-
ing to the UPDRS. The pursuit (POM) was recorded by head-mounted saccadometer 
(Ober Consulting, Poland).  We have used an infrared eye track system coupled with a 
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head tracking system (JAZZ-pursuit – Ober Consulting, Poland) in order to obtain high 
accuracy and precision in eye tracking and to compensate possible subjects’ head 
movements relative to the monitor. Thus subjects did not need to be positioned in an 
unnatural chinrest.  

A patient was sited at the distance of 60-70 cm from the monitor with head sup-
ported by a headrest in order to minimize head motion. We measured slow eye 
movements in response to a light spot with horizontal sinusoidal movements (three 
frequencies: 0.125, 0.25, 0.5Hz) from 10 deg to the left to 10 deg to the right (the 
exact rage of the spot amplitude (in degrees) depends on the patient’s distance from 
the screen). At first the patient has to fixate eyes on the spot in the middle marker  
(0 deg) the spot was placed in 10 deg to the left and 10 deg to the right for the calibra-
tion.  In the next step, patients had to look at the targets (small square) and follow its 
sinusoidal, horizontal movement.   

In each test the subject had to perform 4 periods of POM with low and 10 with 
higher frequencies in Med-off (medication off) within two situations: with DBS off 
(S1) and DBS on (S2).  In the next step the patient took medication and had a break 
for one half to one hour, and then the same experiments were performed, with DBS 
off (S3) and DBS on (S4). In this work we have analyzed POM data using the follow-
ing population parameters averaged for both eyes:  gain (eye movement ampli-
tude/sinus amplitude) and accuracy (difference between sinusoid and eye positions) 
for three different frequencies. 

2.1 Theoretical Basis 

We represent our data in the form of information system that is also called the deci-
sion table. We define such an information system (after Pawlak [6]) as a pair S = (U, 
A), where U, A are nonempty finite sets called the universe of objects and the set of 
attributes, respectively. If a  A and u  U, the value a(u) is a unique element of V 
(where V is a value set).  

The indiscernibility relation of any subset B of A or IND(B), is defined [6] as fol-
lows: (x, y)  IND(B) or xI(B)y if and only if a(x) = a(y) for every a  B, where a(x) 

 V. IND(B) is an equivalence relation, and [u]B is the equivalence class of u, or a  
B-elementary granule. The family of all equivalence classes of IND(B) will be denoted 
U/I(B) or U/B. The block of the partition U/B containing u will be denoted by B(u).   

We define a lower approximation of symptoms set X  U in relation to a symptom 

attribute B as X = {u  U: [u]B  X }, and the upper approximation of X as X = 

{u  U: [u]B X }. It means that, symptoms are classified into two categories 

(sets). The lower approximation set X has the property that all symptoms with certain 
attributes are part of X, and the upper movement approximation set has property that 

only some symptoms with attributes in B are part of X (see [5]). The difference of X 

and X is defined as the boundary region of X i.e., BN B (X). If BN B (X) is empty set 

than X is exact (crisp) with respect to B; otherwise if BNB (X)  and X is not exact 

(i.e., it is rough) with respect to B. We say that the B-lower approximation of a given set 
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X is union of all B-granules that are included in X, and the B-upper approximation of X 
is of the union of all B-granules that have nonempty intersection with X.    

The system S will be called a decision table S = (U, C, D) where C is the condition 
and D is the decision attribute [6]. In the table below (Table 2), as an example, the 
decision attribute D, based on the expert opinion, is placed in the last column, and 
condition attributes measured by the neurologist, are placed in other columns. One 
can interpret each row in the table as a rule. As the number of rules is same as the 
number of rows, and each row is related to different measurements, these rules can 
have many particular conditions. We would like to describe different symptoms in 
different patients by using such rules. On the basis of such rules, using the modus 
ponens principle we wish to find universal rules to relate symptoms and treatments in 
different patients [6].   As symptoms even for the same treatments are not always the 
same; our rules must have certain “flexibility”, or granularity, which can be inter-
preted as the probability of finding certain symptoms in a group of patients under 
consideration. The granular computation simulates the way in which neurologists 
interact with patients. This way of thinking relies on the ability to perceive a patient’s 
symptoms under various levels of granularity (i.e., abstraction) in order to abstract 
and consider only those symptoms that serve to determine a specific treatment and 
thus to switch among different granularities. By focusing on different levels of granu-
larity, one can obtain different levels of knowledge, as well as a greater understanding 
of the inherent knowledge structure. As one of us has demonstrated [1, 2] that the 
visual system is using the granular computing in object recognition, we suggest that 
this approach is essential for human intelligent. 

We define the reduct B⊂A. The set B is a reduct of the information system if 
IND(B) = IND(A) and no proper subset of B has this property. In case of decision 
tables decision reduct is a set B⊂A of attributes which cannot be further reduced and 

IND(B) ⊂ IND(d). A decision rule is a formula of the form (ai1 = v1) ∧...∧( aik = vk) ⇒ 

d = vd, where 1≤ i1 < ... < ik ≤ m, vi ∈ Vai . Atomic subformulas (ai1 = v1) are called 
conditions. In this way, we can replace the original attribute ai with new, binary 
attributes, which indicate whether actual attribute value for an object is greater or 

lower than c (see [7]), we define c as a cut.  Thus a cut for an attribute ai ∈ A, with Vai 

will be a value c ∈ Vai. A template of A is a propositional formula vi ∈ Vai. A genera-

lized template is a formula of the form ∧(ai ∈ Ti) where Ti ⊂ Vai. An object satisfies 

(matches) a template if for every attribute ai we have ai = vi where ai ∈ A.  The tem-
plate is a method to split the original information system into two distinct sub-tables. 
One of these sub-tables consists of the objects that satisfy the template, while the 
second contains all others.  A decomposition tree is defined as a binary tree, whose 
every internal node is labeled by some template and external node (leaf) is associated 
with a set of objects matching all templates in a path from the root to a given leaf [8].  

In a second test we have divided our data into two or more subsets. By training on 
all but one of these subsets (the training set) using machine learning (ML), we ob-
tained classifiers that when applied to the remaining (test) set gave new numerical 
decision attributes, well correlated with neurologist decision attributes (based on a 
confusion matrix).   
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3 Results   

The patients’ mean age was 58.3±9.3(SD) years, mean disease duration was 10.9±1.6 
years, mean UPDRS (related to all symptoms): S1: 59.4±16.2 S2: 29.9±13.3; S3: 
51.2±14.4; S4: 18.2±11.4; mean UPDRS III (related only to motor symptoms): S1: 
43.5±12.7 S2: 20.4±7.9; S3: 35.3±11.1; S4: 9.6±5.9. 

The differences between UPDRS/UPDRS III: S1-S2, and S1-S4 were statistically sig-
nificant (p< 0.001) and S1-S3 was not statistically significant. Our slow eye movement 
(POM) measurements did change significantly with the session number: gain - for 
slow/medium/fast sinusoids were: S1: 1.06±0.1/0.96±0.2/0.83±0.2 S2: 1.03±0.1/ 
0.97±0.2/0.86±0.1 S3: 1.05±0.1/0.99±0.1/0.94±0.1 S4: 1.00±0.1/0.96±0.1/0.87±0.1. Ac-
curacy – as sum of normalized differences between stimulus and eye position - for 
slow/medium/fast sinusoids were: S1: 0.70±0.13/0.62±0.16/0.54±0.18 S2: 0.67±0.18/ 
0.68±0.16/0.61±0.20 S3: 0.73±0.13/0.70±0.18/0.63±0.18 S4: 0.78±0.13/0.76±0.15/ 
0.66±0.18. 

3.1 Rough Set and Machine Learning Approach 

As described above we have used the RSES 2.2 (Rough System Exploration Program) 
[8] in order to find regularities in our data. At first our data was placed in the informa-
tion table as originally proposed by Pawlak [6].  

 

 

 

Fig. 1. Experimental recordings of POM from patient #27 before (upper part) and after (lower 
plot) medications and DBS treatments 
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Table 1. Extract from the information table  

P# age  sex  t_d  S#  UPDRS  HYsc   gxss  gxms  gxfs   accss     accms      accfs 

28   54   1       8      1      58     2.0     0.94  1.04    0.97   0.71     0.86          0.81 

28   54   1       8      2      40     1.0     1.04    0.98    0.93   0.91      0.93         0.86 

28   54   1       8      2      40     1.0     1.17 1.07     0.91   0.82      0.90          0.67   

28   54   1       8      4      16     1.0     1.08 1.00     0.90   0.86      0.89          0.69   
38   56   0      11     1      49     2.5          0.90   0.94    0.94   0.73      0.76          0.66 

38   56   0      11     2      22     1.5     1.04 1.03     0.93   0.89      0.85          0.76 
38  56   0      11      3      37     2.5         0.99    1.01    1.03    0.83     0.81          0.69 

38  56   0      11     4      12     1.5         1.08    1.11   1.03    0.81     0.77         0.76 

 
The full table has 14 attributes and 40 objects (measurements). In the Table 1 are 

values of 11 attributes for two patient: P# - patient number, age – patient’s age, sex – 
patient’s sex: 0 - female, 1 – male, t_d – duration of the disease, S# - Session number, 
UPDRS – total UPDRS, HYsc – Hoehn and Yahr scale all measured by the neurolo-
gist and POM measurements:  gxss  - gain for slow sinus; gxms  - gain for slow sinus;  
gxfs  - gain for slow sinus;   accss  - accuracy for slow sinus;    gxms  - accuracy for 
medium sinus;    gxfs  - accuracy for fast sinus;         

In the next step, we have performed reduction of attributes (see reduct in the  
Method section) to a minimum number of attributes describing our results.   We have 
also created a discretization table: where single values of measurements were replaced 
by their range (as describe in the Method section on cut sets). As the result we have 
obtained the decision table (Table 2 –see below).  

Table 2. Part of the decision discretized-table 

 Pat#  age accfs   Ses# HYsc  SchEng         gxms                 gxfs            UPDRS III 

"28   *  "(0.75,Inf)"    1  *    "(-Inf, 85)"  "(1.04,Inf)"      "(0.845,Inf)"    "(28.0,Inf)" 
"28   *  "(0.75,Inf)"    2   *   "(-Inf, 85)"  "(0.97,1.04)"   "(0.845,Inf)"   "(16.5,28.0)" 
28   *  "(0.39,0.75)"  3   *   "(-Inf, 85)"  "(1.04,Inf)"      "(0.845,Inf)"   "(16.5,28.0)" 

228   * "(0.39,0.75)"   4   *   "(85, Inf)"   "(0.97,1.04)"    "(0.845,Inf)"   "(-Inf,16.5)" 
"38   *  "(0.39,0.75)"  1   *  "(-Inf, 85)"  "(-Inf,0.97)"      "(0.845,Inf)"    "(28.0,Inf)" 
"38   *  "(0.75,Inf)"    2    *  "(-Inf, 85)"  "(0.97,1.04)"     "(0.845,Inf)"  "(-Inf,16.5)" 
"38   *  "(0.39,0.75)"  3    *   "(-Inf, 85)"  "(0.97,1.04)"   "(0.845,Inf)"  "(-Inf,16.5)" 
"38   *  "(0.39,0.75)"  4    *   "(85, Inf)"   "(1.04,Inf)"       "(0.845,Inf)"  "(-Inf,16.5)" 

 
In the first column is the patient’s number, in the second the patient’s age not  im-

portant (*); next was accfs – accuracy for fast sinus freq; Ses# -Session number,  
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Hoehn and Yahr scale were not considered important (stars); SchEng  -Schwabe Eng-
land scale; gxms – gain got medium sinus; gxfs – gain for fast freq. sinus  and UPDRS 
III  that was divided into different ranges: above 28, 16.5 to 28,, and below 16.5 (the 
last column).   On the basis of this decision table we can write the following rule: 

 ('Pat'=28)&('accfs'="(0.75,Inf)”)&('Sess'=1)&('SchEng'=”(-Inf,85)")&('gxms' 
=”(1.04,Inf)")& ('gxfs' ="(0.845,Inf)")  => ('UPDRS III'="(28.0,Inf)")  (1) 

We read this formula above (eq. 1), as stating that each row of the table (Table 1) 
can be written in form of this equation (eq. 1). It states that if we evaluate patient #28 
and with accfs above 0.75 and in session #1 and with Schwabe England scale below 
85. and gxms (gain fom medium freq. sinus) above 1.04 and … and gxfs above 0.845 
then patient’s UPDRS is above 28.  

These equations are parts of a data mining system bases on rough set theory [6].  
We have tested our rule using the machine-learning concept. Randomly dividing 
our data into 4 groups, we took 3 groups as training set and tested the fourth. By 
changing groups belonging to the training and test sets, we have removed the effect 
of accidental group divisions. The results of each test were averaged – thus we have 
performed a 4-fold cross-validation. The results are gives as a confusion matrix 
(Table 3). As a machine-learning algorithm we have used the decomposition tree 
(see Methods). 

Table 3. Confusion matrix for different session numbers (S1-S4) 

                Predicted 

Actual 

 28.0, 
Inf 

16.5, 
28.0 

-Inf,  
16.5 

ACC 

28.0, Inf 0.5 0.5 0.0 0.33 

16.5, 28.0 0.25 0.0 0.25 0.0 

-Inf, 16.5 0.0 0.25 2.25 0.67 

TPR 0.5    0.0     0.67     
 

           
TPR: True positive rates for decision classes, ACC: Accuracy for decision classes: 

the global coverage was 0.4, the global accuracy was 0.774, coverage for decision 
classes: 0.25, 0.3, 0.6. 

Another question that result is, whether EM can help to estimate possible effects of 
different treatments in individual patients? In order to demonstrate an answer, we 
have removed EM measurements and added other typically measured attributes such 
as: the Schwab and England ADL Scale, and UPDRS III and UPDRS IV to the deci-
sion table and tried to predict the effects of different treatments as represented by 
sessions 1 to 4 (medication and stimulation effects- results are in Table 4) and com-
pared them with predictions based on POM (results are in Table 5).     
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We have performed the same procedures once more to test results of patients’ eye 
movement influence on our predictions.    

Table 4. Confusion matrix for different session numbers (S1-S4) 

Predicted 

Actual 

     1      2      3     4 ACC 

1 0.5 0.0 0.5 0.0 0.3 

2 0.0 0.5 0.0 0.3 0.4 

3 0.8 0.0 0.2 0.0 0.2 

4 0.0 0.5 0.0 0.5 0.4 

TPR 0.3   0.3     0.2    0.4  
 

TPR: True positive rates for decision classes, ACC: Accuracy for decision classes: 
the global coverage was 0.64, the global accuracy was 0.53, coverage for decision 
classes: 0.5, 0.5, 0.75, 0.7. 

Table 5. Confusion matrix for different session numbers (S1-S4) 
 

Actual 

Predicted 
     1      2      3     4 ACC 

1 1.75 0.0 0.0 0.0 0.75 

2 0.0 0.25 0.0 0.5 0.25 

3 0.0 0.0 0.5 0.0 0.5 

4 0.0 0.25 0.0 0.75 0.33 

TPR 0.7   0.7     0.6    0.25  

 
TPR: True positive rates for decision classes, ACC: Accuracy for decision classes, 

the global coverage was 0.45; the global accuracy was 0.795; coverage for decision 
classes: 0.58, 0.21, 0.38, 0.42.  

In summary, two last results have demonstrated that adding eye movement (EM) 
results to classical measurements performed by the most neurologists, can result in 
improved predictions of disease progression measured, as measured by improvement 
in global accuracy from 0.5 to 0.8.  The EM measurements may also partly replaces 
neurological measurements such as the UPDRS, as global accuracy of the total 
UPDRS predictions taken from EM data was 0.77 for the above 10 PD patients. 

4 Discussion 

In current therapeutic protocols, even with the large numbers of approaches and clini-
cal trials, there have still been few conclusive results on therapeutic identification and 
measurement of PD symptoms.  We have given an example comparing classical neu-
rological diagnostic protocols with a new approach. The main difference between 
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these types of measures is in their precision and objectivity. Our approach is doctor-
independent and can be performed automatically. In the near future it may help in 
transforming some hospital-based to home-based treatments. In this scenario it will be 
possible to measure patient symptoms at home, and send these for consultation by 
neurologists. 

5 Conclusions 

We have presented a comparison of classical statistical averaging methods for PD di-
agnosis with rough set (RS) approaches. We used processed neurological data from PD 
patients in four different treatments and we have plotted averaged effects of the medi-
cation and brain stimulation in individual patients. As these effects are strongly patient 
dependent they could not give enough information to predict new patient’s behavior. 
The RS and ML approaches are more universal giving general rules for predicting 
individual patient responses to treatments as demonstrated in UPDRS predictions.  
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