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Abstract. Cognitive symptoms are characteristic for neurodegenerative disease:
there are dominating in the Alzheimer’s, but secondary in Parkinson’s disease
(PD). However, in PD motor symptoms (MS) are dominating and their charac-
teristic helps neurologist to recognize the disease. There are a large number of
data mining publications that analyzed MS in PD. Present study is related to the
question if development of cognitive symptoms is related to motor symptoms or
if they are two independent processes? We have responded to this problem with
help of IGrC (intelligent granular computing) approach. We have put together eye
movement, neurological and neuropsychological tests. Our study was dedicated
to 47 Parkinson’s disease patients in two sessions: S#1 - without medications
(MedOFF) and S#2 after taking medications (MedON). There were two groups of
patients: Gr1 (23 patients) less advanced and Gr2 more advanced PD. We have
measured Gr1 in three visits every 6 months: Gr1VIS1, Gr1VIS2, Gr1VIS3. Gr2 (24
patients) has only one visit (no visit number). With rough set theory (RST) that
belongs to IGrC we have found from Gr2 three different sets of rules: a) general
rules (GRUL) determined by all attributes; b) motor related rules (MRUL) – motor
attributes; c) cognitive rules (CRUL) determined by cognitive attributes. By apply-
ing these different sets of rules to different Gr1 visits we have found different set
of symptoms developments. With GRUL we have found for Gr1VIS1 accuracy =
0.682, for Gr1VIS2 acc. = 0.857, for Gr1VIS3 acc. = 0.875. With MRUL we have
found for Gr1VIS1 acc. = 0.80, for Gr1VIS2 acc. = 0.933, for Gr1VIS3 acc. =
1.0. With CRUL we have found for Gr1VIS1 acc. = 0.50, for Gr1VIS2 acc. = 0.60,
for Gr1VIS3 acc. = 0.636. Cognitive changes are independent from the motor
symptoms development.
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1 Introduction

Cognitive changes are leading in the most common neurodegenerative disease (ND)
Alzheimer’s disease (AD), but in Parkinson’s disease (PD) they are secondary to dom-
inating motor symptoms. In the most cases of AD neurodegeneration starts from the
hippocampus and frontal cortex and it related to memory and orientation problems.
With the disease progression other brain regions become also affected. In PD neu-
rodegeneration starts from basal ganglia (substantia nigra) and is related to the lack
of dopamine. Dopamine (Dopa) controls adaptation of movements to the environment.
Therefore PD patients have primary motor symptoms but some of them may have also
cognitive changes [1].

As SN (substantia nigra) neurodegeneration causes depletion the Dopa, in addition
to the movements’ problems there are also potentially emotional and cognitive decays
in some PD. As and individual patient has not only a unique neurodegeneration devel-
opment but also distinctive compensatory processes then as result symptoms might be
various and therefore finding optimal treatment is an art for an experienced neurologist.

We have estimated disease progression in different sets of attributes in order to find
if motor and cognitive symptoms have similar or dissimilar developments.

This study is an enlargement of our earlier works by using additional to our IGrC
(RST) a new attributes – Trail Making Test (TMT) Part A and Part B (see below).

2 Methods

We have evaluated data from Parkinson Disease (PD) patients separated into two main
groups with different disease duration:

• Gr1 contained of 23 patients that received only appropriate medication (L-Dopa).
As mentioned above, because PD starts with major neurodegeneration in substantia
nigra that regulates the level of the dopamine, the major medications are related to
the dopamine precursors or inhibitions of the dopamine reuptake.

• Gr2 involved 24 patients also as Gr1 only on medications, but they were in the
more advanced disease stage. They had longer mean disease duration, as well as their
UPDRSwas higher than that inGr1 group. Also these patients went later to the surgery
of DBS (deep brain stimulation) that was related to placing stimulating electrode in
the basal ganglia – here in the STN (subthalamic nucleus).

All subjects were tested in two related to medications meetings: session 1 (Ses#1)
was for patients that stopped taking their medications one day before our tests; session
2 was performed when patients were on their normal medications.

All PD patients had the following measurements: neuropsychological - related to
the quality of life (PDQ39), sleep problems (Epworth test), depression (Beck test), and
two additional TMT A&B tests; disease duration; UPDRS (Unified Parkinson’s Disease
Rating Scale) as basic neurological test for PD and fast eye movement tests. TMT
tests present the same motor and perceptual demands, namely drawing lines to connect
randomly arranged circles. TMT A has only circles with numbers (motor task). In part
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B there are numbers and letters that additionally measures divided attention and mental
flexibility (TMT B – cognitive task). All patients were tested in the Dept. of Neurology,
Brodno Hospital, Faculty of Health Science, andMedical University ofWarsaw, Poland.
In this study, we have registered reflexive saccadic (RS) eye movements as validated in
our earlier articles [1, 2]. In short, each subject was placed vis-à-vis computer monitor
paying attention to screen before him/her. The experiment began as subject fixated on
the spot light in the center of the computer display. The session normally started from
the spot light slow movements with increasing speed and continued with random in
directions (ten degrees to the right or ten degrees to the left) light spot springing that
patient’s eyes should followed it. This test took about 1.5 min.

We have registered instantaneous light spot and eyes positions by the clinically
proven head-mounted saccadometer (JAZZ novo, Ober Consulting, Poland). In the cur-
rent work, we have only analyzed fast, saccadic responses of both eyes. We have com-
pared light spot and eyes positions and calculated the following attributes of the fast
saccades (RS): the delay (RSL) measured as the differentiation between the initiation of
the light spot and eyes movements; the amplitude of the saccadic - RSAm, its duration
(RSD) and the mean speed (RSV ) of both eyes during the saccade.

All procedures andmeasurements were repeated for each session also in each session
patient has to perform 10 RS and means values of above-mentioned parameters were
used for the analyses.

2.1 Theoretical Basis

The intelligent granular computing (IGrC) analysis was implemented in RST (rough set
theory proposed by Zdzislaw Pawlak [3]) and recently extended by Andrzej Jankowski
[4].

In the standard RST procedure all our results were adapted into the decision table
with rows showing actual attributes’ values for the dissimilar or the same subject and
columns were related to different attributes. Following [3] an information system is a
pair S = (U, A), whereU, A are nonempty finite sets. The setU is the universe of objects,
and A is the set of attributes. If a ∈ A and u ∈ U, the value a(u) is a unique element of
V (where V is a value set). The indiscernibility relation IND(B) of any subset B of A
is defined after [3]: (x, y) ∈ IND(B) iff a (x) = a (y) for every a ∈ B where the value of
a(x) ∈ V. This relation divides A into elementary granules and it is the basis of RST.
In the information system S set B ⊂ A is a reduct if IND (B) = IND (A) and it cannot
be further reduced. Other important RST properties such as lower approximation and
upper approximation were defined and discussed in [3, 5] and illustrated in [6].

In this work we have used different AI: machine learning methods (RSES 2.2) such
as: exhaustive, genetic [7], covering, or LEM2 algorithms [8].

An extension of the information system is the decision table as a triplet: S = (U, C,
D) where attributes A are divided into C and D as condition, and decision attributes [9].
As in a single row there are many condition attributes and one decision attribute related
to a particular measurement of the individual subject we can interpret it as unique rule
if(condition-attribute1 =value1& …)=>(decision-attributen =valuen). If we gather all
such rules (measurements) for a single patient theymight be basis for so-called precision
(personalized) medicine with one condition that they are not contradictory. As in our
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decision table we have measurements of different patients in several conditions our main
purpose is to find universal rules. This is a possible thanks to IGrC implemented in RST
that generalize all specific rules into the knowledge with proposals that are always true
as it is related to the lower approximation, and others are only partly true that is related
to the upper approximation. Notice that the decision attribute (in our case UPDRS) is
the result of tests performed by the neurologist specialized in the Parkinson’s disease.
Therefore, the supervised machine learning with a doctor as the teacher determines our
knowledge.

Even for very experienced neurologist finding optimal treatment is difficult and it
is related to differences between patients and dissimilar effects of similar treatments.
It is connected to differences between individual patients, as the neurodegenerative
processes begin many years earlier than first symptoms in PD and during this time
plastic compensatory processes in each brain are distinctive.

Our algorithms are related to IGrC that takes into account individual patients differ-
ences, but thanks to RST we can obtain abstraction and generalization of our rules that
might simulate intuitions of an experienced neurologist. Also we would like to men-
tion that our IGrC mimics such advanced processes in the brain as for example complex
objects recognition [10].We have recently demonstrated that RST can describe processes
in the visual brain that are related to different objects classification [10]. Therefore, we
might assume that our IGrC rules are sufficiently flexible, abstract and universal (like
a visual brain) to resolve Parkinson’s disease progressions issues related to different
disease stages and various treatments.

We have used as IGrC the RSES 2.2 [11] that generalizes rules from decision table to
treat diverse patients. In our earlier work, we have demonstrated that the RST application
provides enhanced results than proposed by others AI algorithms [1].

3 Results

As explained above in the Methods section we had two groups of patients: Gr1 of less
advanced PD (23 patients) and more advanced group (24 patients). Both group were
tested in two sessions: Ses#1 – without medications and in Ses#2 on medications.

Statistical Results
Patients from group Gr1 had three visits: Gr1VIS1, Gr1VIS2, Gr1VIS3 every 6 months.
Their mean age was 58 ± 13 (SD) years with mean disease duration of 7.1 ± 3.5 years.

For Gr1VIS1 mean total UPDRS in Ses#1 was 48.3± 17.9, in Ses#2 was 23.6± 10.3
(statistically different with p < 0.0001).

For Gr1VIS2 mean total UPDRS in Ses#1 was 57.3± 16.8, in Ses#2 was 27.8± 10.8
(statistically different with p < 0.0005).

For Gr1VIS3 mean total UPDRS in Ses#1 was 62.2 ± 18.2, in Ses#2 was 25 ± 11.6
(statistically different with p < 0.0001).

For Gr2 patients their mean age was 53.7 ± 9.3 years, and they have 10.25 ± 3.9
years disease duration. Their total UPDRS in Ses#1 was 62.1 ± 16.1, and in Ses#2
29.9 ± 13.3.
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3.1 IGrC for Reference Gr2 Group

We have placed Gr2 data in the following information table (Table 1).

Table 1. Part of the decision table for three Gr2 patients

P# dur S# PDQ39 Epw. RSL  RSD   RSAm RSV Beck TrA TrB UPDRS
45 13.3 1 56 10 212 46 9.5 407 19 49 90 76
45 13.3  2 56 10 284 47 9.69 402 19 49 90 42 
46 7.3 1 48 0 202 55 4.7 168 19 49 60 53 
46 7.3 2 48 0 386 49 9.8 367 19 49 60 18 
47 9.3 1 94 6 360 60 10.1 353 37 63 333 70 
47 9.3 2 94 6 206 50 9.6 337 37 63 333 33

The complete Table 1 has 48 rows (24 PD each in two sessions). There are the
following condition attributes: P# - number given to each patients, S# - session number
(1 or 2), dur –duration of the disease, PDQ39 – quality of life test result, Epworth test
(quality of sleep) results, RS parameters (as describe in the Methods section): RSL –
delay. RSD – duration, RSAm – amplitude, RSV – velocity. The last attribute (called
decision attribute) was UPDRS (total UPDRS) as described above.

Table 2. Discretized-table extract for above (Table 1) Gr2 patients

P# dur S# PDQ39 Epw. RSL  RSD RSAm RSV Beck TrA TrB UPDRS

45 "(8.5,Inf)" 1 "(-Inf,58.5)" * "(-Inf,219)" * * * "(12.5,Inf)" * * "(54,Inf)" 
45 "(8.5,Inf)"  2 "(-Inf,58.5)" * "(219,Inf)" * * * "(12.5,Inf)" * * "(18.5,43)" 
46 "(-Inf,8.5)" 1 "(-Inf,58.5)" * "(-Inf,219)" * * * "(12.5,Inf)" * * "(43.0,54)" 
46 "(-Inf,8.5)" 2 "(-Inf,58.5)" * "(219,Inf)" * * * "(12.5,Inf)" * * "(-Inf,18.5)" 
47 "(8.5,Inf)"  1 "(58.5,Inf)" * "(219,Inf)" * * * "(12.5,Inf)" * * "(54,Inf)" 
47 "(8.5,Inf)" 2 "(58.5,Inf)" * "(-Inf,219)" * * * "(12.5,Inf)" * * "(18.5,43)" 

Table 2 is a discretized table for three patients: 45, 46, and 47 in two sessions: S#1
(session 1), and S#2 (session 2). Significant parameters were: disease duration (dur),
session number, PDQ39, RSL (saccade delay), Beck depression test results, andUPDRS.
Not significant were: Epworth test results, RSD, RSAm, RSV – saccades parameters,
and Trail A and B results.

We have used RSES 2.2 for an automatic discretization of the Gr2 measurements.
We have found that UPDRS has 4 ranges: "(-Inf, 18.5)" , "(18.5, 43.0)", "(43.0, 54.0)",
"(54.0, Inf)".

We had obtained 70 rules for Gr2 patients, and after filtering reduced them to 8 rules.
As an example we present below 4 rules filled by the most cases:

(dur="(8.5,Inf)")&(Ses=1)&(Beck="(12.5,Inf)")=>(UPDRS ="(54.0,Inf)"[8]) 8 (1)

(Ses=1)&(RSLat="(219,Inf)")&(Beck="(12.5,Inf)")=>(UPDRS ="(54.0,Inf)"[6]) 6   (2)
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(dur="(8.5,Inf)")&(Ses=1)&(PDQ39="(58.5,Inf)")=>(UPDRS ="(54.0,Inf)"[5]) 5  (3)

(Ses=2)&(PDQ39="(58.5,Inf)")&(Beck="(12.5,Inf)")=>(UPDRS ="(18.5,43)"[5]) 5 (4)

We can interpret rules as following: Eq. 1 claims for 8 cases that if disease duration
was longer than 8.5 years and patients were without medications with Beck test above
12.5 (indicating depression) then his/her total UPDRS was above 54. Previously by
addition the depression results we have obtained higher accuracy than without Beck
depression attribute [12], but in this study we do not see very strong influence of the
depression (compare Eqs. 2 and 3). In Eq. 4 patients were on medication with not good
quality of life and depressive but his/her UPDRS was medium (between 18.5 and 43).

3.2 IGrC for Estimation of General Disease Progression for Gr1 Group

We have used above general rules from Gr2 to predict UPDRS of Gr1 (Table 3).

Table 3. Confusion matrix for UPDRS of Gr1VIS1 group by rules obtained from Gr2-group

Predicted

"(54.0, Inf)" "(18.5, 43.0)" "(43.0, 54.0)" "(-Inf, 18.5)" ACC

Actual "(54.0, Inf)" 7. 0 0.0 0.0 0.0 1.0

"(18.5, 43.0)" 2.0 8.0 0.0 0.0 0.8

"(43.0, 54.0)" 3.0 1.0 0.0 0.0 0.0

"(-Inf, 18.5)" 0.0 1.0 0.0 0.0 0.0

TPR 0.6 0.8 0.0 0.0

TPR: True positive rates for decision classes; ACC: Accuracy for decision classes:
the global coverage was 0.48 and the global accuracy was 0.68, the coverage for decision
classes was 0.8, 0.45, 0.57, 0.125.

Table 4. Confusion matrix for UPDRS of Gr1VIS2 group by rules obtained from Gr2-group

Predicted

"(54.0, Inf)" "(18.5, 43.0)" "(43.0, 54.0)" "(-Inf, 18.5)" ACC

Actual "(54.0, Inf)" 6.0 0.0 0.0 1.0 1.0

"(18.5, 43.0)" 1.0 7.0 0.0 0.0 0.875

"(43.0, 54.0)" 2.0 2.0 0.0 0.0 0.0

"(-Inf, 18.5)" 0.0 0.0 0.0 0.0 0.0

TPR 0.7 0.8 0.0 0.0



554 A. W. Przybyszewski et al.

TPR: True positive rates for decision classes; ACC: Accuracy for decision classes:
the global coverage was 0.39 and the global accuracy was 0.72, the coverage for decision
classes was 0.46, 0.5, 0.4, 0.0.

Table 5. Confusion matrix for UPDRS of Gr1VIS3 group by rules obtained from Gr2-group

Predicted

"(54.0, Inf)" "(18.5, 43.0)" "(43.0, 54.0)" "(-Inf, 18.5)" ACC

Actual "(54.0, Inf)" 7.0 0.0 0.0 0.0 1.0

"(18.5, 43.0)" 0.0 7.0 0.0 0.0 1.0

"(43.0, 54.0)" 1.0 1.0 0.0 0.0 0.0

"(-Inf, 18.5)" 0.0 1.0 0.0 0.0 0.0

TPR 0.9 0.8 0.0 0.0

TPR: True positive rates for decision classes; ACC: Accuracy for decision classes:
the global coverage was 0.37 and the global accuracy was 0.82, the coverage for decision
classes was 0.5, 0.438, 0.29, 0.11.

Results from Table 3 to 5 we interpret that with the disease development in time
patients from Gr1 become more similar to patients from Gr2 as predictions of their
symptoms become more precise from 0.68 to 0.82.

3.3 IGrC for Estimation of Motor Disease Progression for Gr1 Group

Wehaveused the following attributes in order to predictUPDRSofGr1groupon the basis
of motor attributes such as Trail A rests (time of number connecting), eye movements
results (RL – latency of saccades) and in addition disease duration and quality of sleep
(Epworth test results). In this case, we have obtained from Gr2 33 rules, as examples:

(Ses=1)&(TrailA="(42.0,Inf)")&(dur="(5.695,Inf)")&(Epworth="(-Inf,14.0)")
&(RSLat= "(264.0,Inf)") =>(UPDRS ="(63.0,Inf)"[4]) 4 (5)

(dur="(5.695,Inf)")&(Ses=2)&(RSLat="(-Inf,264.0)")&(Epworth="(-Inf,14.0)")&
(TrailA= "(-Inf,42.0)")=>(UPDRS ="(-Inf,33.5)"[4]) 4 (6)

(dur="(5.695,Inf)")&(Ses=2)&(TrailA="(42.0,Inf)")&(RSLat="(-Inf,264.0)") & 
(Epworth="(14.0,Inf)")=>(UPDRS ="(-Inf,33.5)"[3]) 3 (7)

Notice that these rules Eqs. 5–7 describe UPDRS in two ranges: below 33.5 or above
63. In the consequence in Tables 6, 7 and 8 (below) there is no prediction for other ranges
of UPDRS. Equation 5 says that for patients without medication, with disease duration
above 5.7 years with long delay of saccades and slow Trail A then their UPDRS was
above 63. Even with similar disease duration as in Eq. 6 if patients were on medications
and had a short saccadic delay then their UPDRS was below 33.5 (Eq. 7).
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Table 6. Confusionmatrix forUPDRSofGr1VIS1 group bymotor rules obtained fromGr2-group

Predicted

"(63.0, Inf)" "(33.5, 43.0)" "(43.0, 63.0)" "(-Inf, 33.5)" ACC

Actual "(63.0, Inf)" 2.0 0.0 0.0 0.0 1.0

"(33.5, 43.0)" 0.0 0.0 0.0 0.0 0.0

"(43.0, 63.0)" 1.0 0.0 0.0 0.0 0.0

"(-Inf, 33.5)" 0.0 0.0 0.0 2.0 1.0

TPR 0.7 0.0 0.0 1.0

TPR: True positive rates for decision classes; ACC: Accuracy for decision classes:
the global coverage was 0.22 and the global accuracy was 0.5, the coverage for decision
classes was 0.7, 0.0, 0.08, 0.08.

Confusion Tables 6, 7 and 8 shows that the motor symptoms give very accurate
estimation of the UPDRS with accuracy from 0.8 to 1. There is only problem that
coverage is small between 0.11 and 0.32. On the basis of motor attributes, we have very
precise predictions but only for a small percentage of the population subjects.

Table 7. Confusionmatrix forUPDRSofGr1VIS2 group bymotor rules obtained fromGr2-group

Predicted

"(63.0, Inf)" "(33.5, 43.0)" "(43.0, 63.0)" "(-Inf, 33.5)" ACC

Actual "(63.0, Inf)" 3. 0 0.0 0.0 0.0 1.0

"(33.5, 43.0)" 0.0 0.0 0.0 0.0 0.0

"(43.0, 63.0)" 1.0 0.0 0.0 0.0 0.0

"(-Inf, 33.5)" 0.0 0.0 0.0 11.0 1.0

TPR 0.8 0.0 0.0 1.0

TPR: True positive rates for decision classes; ACC: Accuracy for decision classes:
the global coverage was 0.33 and the global accuracy was 0.6, the coverage for decision
classes was 0.86, 0.25, 0.33, 0.0.

Table 8. Confusionmatrix forUPDRSofGr1VIS3 group bymotor rules obtained fromGr2-group

Predicted

"(63.0, Inf)" "(33.5, 43.0)" "(43.0, 63.0)" "(-Inf, 33.5)" ACC

Actual "(63.0, Inf)" 1.0 0.0 0.0 0.0 1.0

"(33.5, 43.0)" 0.0 0.0 0.0 0.0 0.0

"(43.0, 63.0)" 0.0 0.0 0.0 0.0 0.0

"(-Inf, 33.5)" 0.0 0.0 0.0 8.0 1.0

TPR 1.0 0.0 0.0 1.0
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TPR: True positive rates for decision classes; ACC: Accuracy for decision classes:
the global coverage was 0.24 and the global accuracy was 0.64, the coverage for decision
classes was 0.45, 0.13, 0.3, 0.11

3.4 IGrC for Estimation of Cognitive Disease Progression for Gr1 Group

We have used the following attributes in order to predict UPDRS_T of Gr1 group on the
basis of motor attributes such as Trail B rests (time of number and letters connecting),
eye movements results (RL – latency of saccades) and in addition session number and
quality of sleep (Epworth test results). In this case, we have obtained from Gr2 rules, as
examples are:

(TrailB="(127.5,Inf)")&(Ses=1)&(Epworth="(-Inf,7.5)")=>(UPDRS="(63.0,Inf)"
[4])  4         (8)

(Ses=1)&(RSLat="(244.5,Inf)")&(Epworth="(-Inf,7.5)")=>(UPDRS="(63.0,Inf)"
[3]) 3 (9)

(TrailB="(127.5,Inf)")&(Ses=2)&(RSLat="(-Inf,244.5)")=>(UPDRS="(18.5, 43.0)"
[3]) 3 (10)

(TrailB="(-Inf,52.0)")&(Ses=1)=>(UPDRS ="(43.0,63.0)"[2]) 2 (11)

The Eq. 8 described the rule for 4 cases when patients were without medications (Ses
= 1) and cognitively slow (Trail B time longer than 127.5 s) and without sleep problems
(Epworth below 7.5) then UPDRS was above 63 (Eq. 8). In the next Eq. 9 there were
similar condition attributes (no medications, no sleep problems), but slow cognitive
was replaced but slowness in the reflexive saccades (long latency) that determined an
advanced (above 62) UPDRS.

Equation 10 demonstrated that if patient was on medication and had a short saccadic
latency, even if his/her Trail B was slow, the UPDRS was in medium range. But without
medications even if Trail B was good his/her UPDRS was high (between 43 and 63)
(Eq. 11).

Table 9. Confusion matrix for UPDRS of Gr1VIS1 group by cognitive rules obtained from
Gr2-group

Predicted

"(63.0, Inf)" "(18.5, 43.0)" "(43.0, 63.0)" "(-Inf, 18.5)" ACC

Actual "(63.0, Inf)" 2.0 0.0 0.0 0.0 1.0

"(18.5, 43.0)" 3.0 1.0 0.0 0.0 0.3

"(43.0, 63.0)" 2.0 0.0 2.0 0.0 0.5

"(-Inf, 18.5)" 0.0 0.0 0.0 0.0 0.0

TPR 0.3 1.0 1.0 0.0

TPR: True positive rates for decision classes; ACC: Accuracy for decision classes:
the global coverage was 0.22 and the global accuracy was 0.5, the coverage for decision
classes was 0.7, 0.0, 0.08, 0.08.
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Table 10. Confusion matrix for UPDRS of Gr1VIS2 group by cognitive rules obtained from
Gr2-group

Predicted

"(63.0, Inf)" "(18.5, 43.0)" "(43.0, 63.0)" "(-Inf, 18.5)" ACC

Actual "(63.0, Inf)" 5.0 0.0 0.0 0.0 0.8

"(18.5, 43.0)" 1.0 3.0 0.0 0.0 0.8

"(43.0, 63.0)" 4.0 0.0 1.0 0.0 0.2

"(-Inf, 18.5)" 0.0 0.0 0.0 0.0 0.0

TPR 0.5 1.0 0.5 0.0

TPR: True positive rates for decision classes; ACC: Accuracy for decision classes:
the global coverage was 0.33 and the global accuracy was 0.6, the coverage for decision
classes was 0.86, 0.25, 0.33, 0.0.

Tables 9, 10 and 11 demonstrated that cognitive changes were not changing so fast
with disease development as general or motor changes. They are more stable than other
changes and not in themain stream of the neurodegeneration processes in PD. It is related
to the fact that accuracy of cognitive changes (from 0.5 to 0.64) was significantly lower
in comparison to general (from 0.68 to 0.88) or to motor (from 0.8 to 1.0) symptoms
development during disease progression.

Table 11. Confusion matrix for UPDRS of Gr1VIS3 group by cognitive rules obtained from
Gr2-group

Predicted

"(63.0, Inf)" "(18.5, 43.0)" "(43.0, 63.0)" "(-Inf, 18.5)" ACC

Actual "(63.0, Inf)" 4.0 0.0 1.0 0.0 0.8

"(18.5, 43.0)" 0.0 2.0 0.0 0.0 1.0

"(43.0, 63.0)" 2.0 0.0 1.0 0.0 0.3

"(-Inf, 18.5)" 0.0 1.0 0.0 0.0 0.0

TPR 0.7 0.7 0.5 0.0

TPR: True positive rates for decision classes; ACC: Accuracy for decision classes:
the global coverage was 0.24 and the global accuracy was 0.64, the coverage for decision
classes was 0.45, 0.13, 0.3, 0.11.

4 Discussion

We have used IGrC for evaluation of disease development in our longitudinal study of
patients with Parkinson’s disease (PD).We applied IGrC (intelligent granular computing
with RST [3] that looks into “crisp” granules and estimates objects by upper and lower
approximations that determine precision of the description as dependent from properties
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of granules [3]. In order to follow time changes we have used similarities measured by
estimating accuracy between more advance group of patients (Gr2) and another group
Gr1 measured three times every 6 months. General and motor symptoms are following
disease progression in contrast to cognitive changes that have lower accuracies thatmight
suggest that there different mechanisms of neurodegeneration even if there are some
similarities between Parkinson’s and Alzheimer’s diseases. The next interesting step
might be to look into emotional developments during disease progression if they progress
like motor symptoms or are relatively low like cognitive changes? In our previous work
[13] we have proposed that in analog to the Model of different objects learned in the
visual brain we can think about the Model of the Parkinson’s disease in the advanced
stage of the disease. Therefore, we can take the group Gr2 as a Model and look into
similarities between disease time developments of Gr1. For general andmotor symptoms
similarity (accuracy of rules) increases to near 1 with disease development. But for the
cognitive change it is not exactly the case. Therefore Gr2 is not good model for cognitive
developments in time for Gr1. It might be related to large interindividual variability in
cognitive decay between PD patients. However, the most data mining studies related
to Parkinson’s disease concentrate on motor symptoms such as gait [14] or speech
articulation [15].
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