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Abstract .  We recorded intracellular responses from cat reti- 
nal ganglion cells to sinusoidal flickering lights, and com- 
pared the response dynamics with a theoretical model based 
on coupled nonlinear oscillators. Flicker responses for sev- 
eral different spot sizes were separated in a "smooth" gen- 
erator (G) potential and corresponding spike trains, We 
have previously shown that the G-potential reveals complex, 
stimulus-dependent, oscillatory behavior in response to sinu- 
soidally flickering lights. Such behavior could be simulated 
by a modified van der Pol oscillator. In this paper, we ex- 
tend the model to account for spike generation as well, by 
including extended Hodgkin-Huxley equations describing lo- 
cal membrane properties. We quantified spike responses by 
several parameters describing the mean and standard devia- 
tion of spike burst duration, timing (phase shift) of bursts, 
and the number of spikes in a burst. The dependence of 
these response parameters on stimulus frequency and spot 
size could be reproduced in great detail by coupling the van 
der Pol oscillator and Hodgkin-Huxley equations. The model 
mimics many experimentally observed response patterns, in- 
cluding non-phase-locked irregular oscillations. Our findings 
suggest that the information in the ganglion cell spike train 
reflects both intraretinal processing, simulated by the van 
der Pol oscillator, and local membrane properties described 
by Hodgkin-Huxley equations. The interplay between these 
complex processes can be simulated by changing the cou- 
pling coefficients between the two oscillators. Our simula- 
tions therefore show that irregularities in spike trains, which 
normally are considered to be noise, may be interpreted as 
complex oscillations that might carry information. 

1 Introduct ion 

1.1 Extracting information from noisy spike trains 
by applying averaging methods 

The spontaneous activity of most structures in the central 
nervous system (CNS) is irregular. In the past, periodic 
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stimulation and averaging techniques have been used to re- 
move these irregularities from the response. This approach 
assumes that the spike train consists of separable signal and 
noise components. By repeating the same stimulus many 
times and averaging, the signal-to-noise ratio can be im- 
proved (e.g., de Boer and Kuyper 1968). In this approach, 
averaging serves to separate signal from stochastic fluctua- 
tions. 

Despite their elegance, there are several limitations to av- 
eraging techniques in electrophysiology. The temporal res- 
olution of averaging is often too coarse to represent the 
changes introduced by fast adaptation processes. More im- 
portantly, many neuronal structures show response regular- 
ities that are not phase-locked and would go unnoticed in 
averaged responses. In the retina, for example, responses to 
diffuse light flashes show multiresolution oscillations, which 
may or may not be phase-locked to the stimulus (Przy- 
byszewski 199l). Rather than assuming a stimulus-locked 
signal and irrelevant noise, we propose to describe the dy- 
namics of ganglion cell responses as resulting from the in- 
terplay between several different dynamical processes. 

We use intracellularly recorded ganglion cell responses 
in the cat retina as an example because they reveal both the 
generator potential and the generated spikes, and thus allow 
intraretinal processing and spike generation to be studied in 
great detail. To analyze intraretinal processing and spike gen- 
eration separately, the intracellular potential can be separated 
into a slow generator potential and a train of fast action po- 
tentials. In a previous paper (Przybyszewski et al. 1993), we 
analyzed the dynamics of the generator potential responses. 
It was shown that the generator potential consists of highly 
complex oscillations which are not necessarily phase-locked 
to the light stimulus. By changing flicker frequency or spot 
size, for example, the generator potential oscillations could 
be changed from synchronized to non synchronized and vice 
versa. In contrast, other components of the ganglion cell re- 
sponses were always synchronized to the stimulus. These 
synchronized responses account for the fact that averaging 
or post-stimulus-time histogram (PSTH) techniques can be 
used to extract information under most circumstances. How- 
ever, they do not reveal all the information present in the 
response. 
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O. 1 Noise and spontaneous oscillations 

Like most other cells in the CNS, cat retinal ganglion cells 
typically show a characteristic spontaneous activity. Spon- 
taneous activity can be interpreted as intrinsic oscillatory 
behavior in the CNS. Such spontaneous oscillations com- 
plicate neural responses to even very simple stimuli, be- 
cause interactions occur between the response to the stimu- 
lus and the intrinsic oscillations. In our previous paper we 
modeled such interactions in the generator potential of cat 
retinal ganglion cells using the Bonhoeffer-van der Pol os- 
cillator (Przybyszewski et al. 1993). The work presented in 
this paper is an extension of the previous analysis of gan- 
glion cell responses. Here, we also consider cell membrane 
properties and simulate spike train responses to sinusoidally 
modulated light spots, The resulting model allows us to de- 
scribe seemingly irregular spike responses as complex, deter- 
ministic oscillations. Since we describe both the generator 
potential responses and spike generation, we can correlate 
different types of oscillation in the spike train with different 
underlying processes: intraretinal processes determining the 
generator potential and membrane properties responsible for 
spike generation. We will show that the real-time, complex 
dynamics of the generator potential and spike train responses 
can result from the interplay between these processes. 

0.2 The dynamical systems approach 
to neural signal dissection 

The interaction between different parts of the CNS, and 
between the generator potential and membrane channels, 
can be generalized to a coupling between different oscilla- 
tors. Cowan and Wilson (1972) proposed dividing the CNS 
into inhibitory and excitatory neuronal populations with mu- 
tual coupling between them. This approach was later ap- 
plied to different parts of the brain and extensively used for 
the olfactory system (Baird 1986; Freeman 1987). Freeman 
(1987) modeled the olfactory system with coupled masses 
of excitatory-inhibitory neurons on different levels, from re- 
ceptor to cortex, and compared his simulations to electroen- 
cephalographic (EEG) experimental results. He found sim- 
ilarities between experimentally observed attractors and at- 
tractors in his model. Baird (1986) used a similar model to 
construct a unified theory of pattern recognition and asso- 
ciative memory. This work provided a new understanding of 
many neurophysiological mechanisms and showed the merit 
of a dynamical systems approach to neurophysiology. 

In this study we investigate the usefulness of this ap- 
proach for the activity at the level of ganglion cells in the 
cat retina. From a mathematical point of view, a general the- 
oretical analysis of the behavior of multiple, coupled oscil- 
lators is difficult (Baesens et al. 1991; Linsay and Cumming 
1989). Very complex behaviors, such as quasi-periodicity or 
chaos, are natural for such systems. This kind of irregular- 
ity is difficult to differentiate from noise under experimental 
conditions. Experimentally, the approach involves identify- 
ing points of bifurcation by changing experimental parame- 
ters and comparing them with proposed theoretical models 
(Aguirre and Billings 1994). We used such an approach to 
identify invariants in the spike train which cannot be found 

by using only time or frequency averaging methods. The 
resulting model allows us to describe seemingly irregular 
spike responses as complex, deterministic oscillations. The 
analysis furthermore shows which local retinal oscillations 
are being transmitted in the spike train, and which part of the 
activity results from processes related to spike generation. 

1 Methods 

1.1 Data recording 

The methods of animal preparation and intracellular recording have been 
described in detail before (van de Grind 1981; Lankheet et al. 1989; Przy- 
byszewski et al. 1993). Experiments were performed with the animals 
(cats) under pentobarbital anesthesia (40mg/kg i.p. initial dose). The cats 
were artificially ventilated and end-tidal PCO2 was kept between 3.5% and 
4.5%. Muscle relaxation was initiated with 80rag flaxedil and maintained 
with a continuous infusion of 6.6rag gallamine triethiodide, 0.25 mg d- 
tubocurarine, and 5% glucose in 3 ml Ringer solution per hour per kilogram 
b.w. The form of the intra-aortic electrocardiogram (EKG), the stability of 
the heart rate, and blood pressure were monitored throughout the procedure. 
These data were used to dose additional i.v. injections of pentobarbital dur- 
ing the experiment. Rectal temperature was kept at approximately 38 ~ 
Pupils were dilated with atropine, and phenylephfine was used to retract 
the nictitating membrane. Lidocaine 2% was injected at all surgical sites. 

Ganglion cell activity was recorded intracellularly in the optically in- 
tact in situ eye. Cells were classified on the basis of their responses to 
light flashes of 2 s duration and a spot diameter approximately equal to the 
size of the receptive field center. A cell was called "sustained" or X-type 
(Enroth-Cugell and Robson 1966) if there was a significant difference in 
spike frequency between the end of the stimulation period and the return 
to baseline activity. The light spots were centered on the receptive field 
and were either sinusoidally or square-wave modulated in intensity. We 
recorded responses as a function of temporal frequency for several differ- 
ent spot sizes. The mean luminance was in the photopic range (53-530 
cd/m2). The modulation depth was 0.6 in all cases. The data were sampled 
with 16-bit resolution at a frequency of 10kHz. 

1.2 Data analysis 

Intracellularly recorded ganglion cell activity consists of a "slow" generator 
potential and fast, superimposed spikes. These two response components 
were separated using wavelet functions to identify spikes and spline ap- 
proximations to estimate the spike-free generator potential. These proce- 
dures have been fully described in previous papers (Przybyszewski 1991; 
Przybyszewski et al. 1993). The resulting spike trains were then analyzed 
by comparing responses in each stimulation period. All responses consist 
of clearly recognizable spike bursts separated by silent periods (Fig. 3). A 
spike burst was defined as a group of spikes separated by the longest silent 
period in each stimulus cycle. Each response cycle thus contains a single 
spike burst and a silent period. The spike bursts can be regular or irregular 
over many repeated stimulus cycles, and they can differ in duration relative 
to the silent periods. To compare the experimental spike trains with model 
simulations, we quantified the spike responses by the following parameters: 

�9 Mean, relative burst duration, T~/Tp, where Td is the duration of a spike 
burst and Tp the silent period between bursts. 

�9 Mean phase, q~, describing the position of the spike burst relative to the 
stimulus. It is defined as the phase difference between the beginning of 
spike discharges and the minimum intensity in each stimulus cycle. 

�9 The irregularity, at, of spike burst duration over successive stimulus pe- 
riods. It is defined as the standard deviation of the relative burst duration, 
divided by the mean T~/Tp, o-r is equivalent to the normalized standard 
deviation. 

�9 The mean number of spikes, n, in each period of stimulation. 
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Together, these parameters capture the most important features of the 
different patterns observed in responses to sinusoidally flickering lights, 
for different spot sizes. The response parameters were calculated over four 
consecutive stimulus periods. The first several periods of stimulation were 
discarded to exclude the initial transients in the responses. In some cases we 
observed response modulations much slower than the frequency of stimula- 
tion (e.g. Fig. 3A; spot size 0.5 deg and frequency 8 Hz). In such cases we 
started the analysis after the infrequent irregularities. The parameters were 
calculated for both the experimental responses and the simulated model 
responses in exactly the same way and for the same number of periods. 

1.3 Simulations 

Our model takes the form of a set of nonlinear differential equations 
that describe the generator potential and membrane properties. Simulations 
were performed on a Sun Workstation using a modified Dynamical Sys- 
tems Toolkit (dstool) with an Interactive Graphical Interface (Back et al. 
1992). Integrations were performed using the Runge-Kutta method for a rel- 
atively small time step (0.01-15/zs). The model simulates the intracellularly 
recorded membrane potentials, consisting of a slow generator potential with 
superimposed fast spikes. These simulated model responses were analyzed 
in the same manner as were the experimental data. 

2 Results 

We will first describe the experimental results on spike ac- 
tivity. The spike trains contain all the information available 
to the higher visual centers. This is also the only informa- 
tion that could be obtained by extracellular measurements. 
Next, we will show how these spike trains result from inter- 
actions between intracellular generator potentials and spike 
generation processes. To this end, we will briefly summarize 
the description of  generator potential dynamics in terms of  
a modified van der Pol equation (see Przybyszewski et al. 
1993, for more details); then we outline the Hodgkin-Huxley 
equations describing active membrane properties responsible 
for spike generation; and finally we describe their interac- 
tion, by coupling the van der Pol oscillator and Hodgkin- 
Huxley equations to show how different modes of  oscilla- 
tory activity can be simulated by changing the strength of  
coupling. 

2.1 Spike train properties as a function 
of stimulus frequency 

In a previous paper we have given a qualitative description 
of ganglion cell responses to sinusoidal flicker, for differ- 
ent spot sizes and flicker frequencies (Przybyszewski et al. 
1993). Here we give a quantitative description of  the spike 
train, using the parameters summarized in the Methods sec- 
tion. All experimental data that we show are from a single, 
extraordinarily stable, and long-lasting recording. Note that 
it was not our objective to provide a detailed comparison 
of  parameter values between different recordings. The data 
set for this cell served as a representative example, and we 
used it to illustrate the principles of  the analysis. The cell 
was classified as an on-center, X-type ganglion cell. It had 
a receptive field of  0.7 deg diameter, at about 3 deg eccen- 
tricity. 

Figure 1A shows the relative burst duration, Td/Tp, as a 
function of  the stimulation frequency for spot diameters of  

0.7, 0.5 and 0.2 deg. Simulation results for all spot sizes and 
stimulation frequencies (see below) are included for com- 
parison. The functions are nonlinear for all spot sizes and 
reach a minimum around 8 Hz. At this frequency the burst 
duration for spot sizes of 0.7 and 0.5 deg is very short. The 
change of burst duration with frequency clearly differs for 
different spot sizes. For a spot of  0.7 deg, Td/Tp changes 
by about a factor of  50 for modulation frequencies between 
2 and 8 Hz. For smaller spots (0.2 deg), the influence of  
frequency on burst duration is significantly weaker, and the 
function is almost fiat. 

Figure 1B shows the phase lag, qS, between the stimulus 
and beginning of  the spike bursts, also as a function of flicker 
frequency, and with spot size as the parameter in the graph. 
The phase lag increases linearly with frequency and there 
is no difference between these functions for different spot 
sizes. Such a linear phase-frequency relationship could also 
be described as a fixed time delay between the stimulus and 
the beginning of  a burst. The slope of the curves in Fig. 1B 
would correspond to a delay of 50-80 ms. 

Figure 1C shows the irregularity of  burst duration, at, 
as a function of  stimulation frequency. A decrease in spot 
size from 0.7 deg to 0.5 deg causes a strong (3- to 10-fold) 
increase of the irregularity measure err. A further decrease in 
spot size from 0.5 to 0.2 deg has relatively little influence on 
the irregularity of burst duration. Spike bursts are extremely 
regular for a stimulation frequency of  8 Hz and for a spot 
size of  0.7 deg. This is also clearly illustrated in Fig. 3, in 
which traces of  the intracellular responses are presented. A 
decrease or increase of  flicker frequency caused an increase 
in irregularity (by a factor of  10 in some cases) relative to 
a frequency of  8 Hz. 

In Fig. 1D, the mean number of spikes per stimulus pe- 
riod, n, is plotted as a function of  the stimulation frequency. 
For all spot sizes the number of spikes decreases monotoni- 
cally with temporal frequency. The influence of  spot size is 
negligible. 

In summary, the response parameters in Fig. 1 provide 
a quantitative description of  the different spike patterns that 
were experimentally observed for different flicker frequen- 
cies and for different spot sizes. The mean burst duration 
and regularity of  burst duration show a strong dependence 
on spot size, whereas phase shift and the number of spikes 
per period do not. 

2.2 Analysis and simulation of the generator potential 

In a previous paper we analyzed and modeled the dynamics 
of the generator potential, after removal of  the spikes from 
the intracellularly recorded responses. A wavelet method and 
spline interpolation of  the "spike scars" was used to recon- 
struct a spike-free generator (G-) potential (Przybyszewski 
1991). We used the pseudo-phase space with van der Pol 
transformation (Przybyszewski et al. 1993) to show how os- 
cillations in the G-potential are synchronized with the stim- 
ulus. In three-dimensional phase space the generator poten- 
tial shows two different oscillations: one with a period equal 
to the stimulus period and a second, faster one which ap- 
pears only during part of  a stimulation period. The faster 
oscillations are not exactly synchronized with the stimulus, 
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Fig. IA-D. Experimental and 
simulation results for the dif- 
ferent parameters describing 
the spike bursts as a function 
of flicker frequency. The stim- 
ulus parameter in each graph 
is the spot size, given in de- 
grees; r stands for experimen- 
tal recordings and s for sim- 
ulated results. The results for 
different spot sizes in B and 
D could be simulated with the 
same model coefficients 

but all appear around the same phase of the slower oscil- 
lations. This characteristic behavior was observed for many 
different frequencies of stimulation and different spot sizes 
(Przybyszewski et al. 1993). 

To simulate the oscillations in the G-potential we used 
the Bonhoeffer-van der Pol differential equation: 

dz 
d-t = k(y + x - z3/3) (la) 

d__yy = 1 / k ( - x  + a + bcos(wt)) (lb) 
dt 

where: k is a positive constant which determines the non- 
linearity, b is the amplitude of the forcing term, w = 27r f ,  f 
being the frequency of the forcing signal, and a is a constant 
threshold for the external forcing signal. 

In phase space, the flow spends most of the time near 
a stable manifold of the lower branch of the curve: y = 
- z  + z 3 / 3 .  There is a critical value of parameter a and the 
forcing term amplitude, for which the solution x ( t )  enters an 
unstable region, and a Hopf bifurcation occurs (Honerkamp 
et al. 1985). When the flow approaches an unstable branch, 
relaxation oscillations take place. These can be seen as fast 
oscillations in part of the slow oscillation period. By chang- 
ing the parameter a, the equilibrium point of the system 
will change and the phase of the stimulation period where 
the Hopf bifurcation occurs can be changed, leading to a 
transition from a stable equilibrium to a stable limit cycle 
(Braaksma 1993). 

The critical stimulation frequency in our experimental 
data was 8 Hz. It represents the most nonlinear case, with 
only one period of the fast oscillations occurring in each 
stimulus period. A decrease of the stimulation frequency 
from 8Hz to 4Hz and to 2Hz increases the number of 
fast oscillations in every period of stimulation. Changing 
the stimulation frequency also changed the synchronization 
of the fast oscillations relative to the slow oscillations. For 
flicker frequencies of 8 Hz and 4 Hz, the two types of oscil- 
lation are synchronized, whereas for a frequency of 2 Hz we 
observed quasi-periodicity. All these different response pat- 
terns could be simulated with the van der Pol oscillator. The 
critical parameter for reproducing the previously described 
changes in the generator potential was the coefficient of non- 
linearity, k. In the most nonlinear case (8 Hz), k had a value 
of 4. Response patterns at higher frequencies (16 and 24 Hz) 
were well reproduced with a value for k of about 2, whereas 
for lower frequencies a value of about 3 was optimal. 

By modeling the generator potential with the van der Pol 
oscillator we summarize all intraretinal information process- 
ing that underlies the responses in a simple set of differential 
equations. The van der Pol oscillator thus serves as a black 
box description of many different processes that finally re- 
sult in modulations of the G-potential of ganglion cells. The 
striking similarities between the simulated and experimental 
response patterns show that the system can be characterized 
mathematically as an externally forced nonlinear oscillator. 
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The G-potential shows all the information available be- 
fore the signal is converted into a spike train. However, 
higher visual centers and most electrophysiologists have 
available only the information present in the spike train. In 
this light it is more interesting, therefore, to know what infor- 
mation is passed on from the G-potential to the spike train, 
and how the different response patterns can be observed in 
spike trains. To answer this question we extend the analysis 
in the next section to include spike generation. Spike gener- 
ation will be described by Hodgkin-Huxley equations based 
on patch-clamp recordings from cat and rat retinal ganglion 
cells. 

2.3 Membrane properties and spike generation 

Patch-clamp recordings from enzymatically dissociated soli- 
tary cat and rat retinal ganglion cells revealed that the 
cell membrane contains multiple types of voltage-activated 
ion channels (Lipton and Tauck 1987; Kaneda and Kaneko 
1991 a,b; Skaliora et al. 1993). These voltage-gated channels 
are usually classified according to their primary ionic se- 
lectivity. The main groups are Na +, K +, and Ca 2+ channels. 
While it appears that there is only one type of Na + channel, 
K + and Ca 2+ channels can be further subdivided according 
to specific biophysical and pharmacological properties. The 
above-mentioned authors have identified dynamic properties 
of each ion channel by separating them using different spe- 
cific chemical blockers. 

For example, applying 0.1-40 #M tetrodotoxine (TTX) 
reversibly blocked the fast component of the action potential, 
which was probably dominated by INa (Lipton and Tauck 
1987; Kaneda and Kaneko 1991a; Skaliora et al. 1993). 
When 40 #M TTX and 20 mM tetraethylammonium (TEA) 
were added together, the depolarizing stimulus elicited a 
slower action potential followed by a small after-hyperpo- 
larization, which was caused by at least partial blockade of 
the Na + channel, the delayed outward K + channel IK, and 
the transient K+channel IA. IK and IA contribute to the repo- 
larization phase of the action potential. Ca 2+ entering during 
the action potential activate a K + conductance which, along 
with irK, contributes to the after-hyperpolarization. This con- 
stitutes a negative feedback in which an inward current trig- 
gers outward K + currents, which can influence the rate at 
which the cell reaches threshold. It follows that these out- 
ward K + currents can modulate the spike frequency. IK.Ca 
underlies the after-hyperpolarization in cat and rat ganglion 
cells. In whole-cell recordings using patch electrodes (Lip- 
ton and Tauck 1987; Kaneda and Kaneko 1991b), INa and 
Ica were isolated by suppressing the outward IK currents 
with intracellular Cs + and TEA. COC12 3 mM was added to 
the bath to suppress Ica, and in the other experiment 1 # M 
TTX suppressed INa. The rates of activation and inactivation 
were slower for the Ca 2+ than for Na + components. 

For the purpose of this study, and based on the available 
data in the literature, we have simulated action potentials 
using five components: Na + current, IN~; Ca 2+ current, /Ca; 
a current with properties similar to the delayed outward K + 
current, [K; a transient A-type K + current IA; and a Ca 2+- 
activated K + current, [K.Ca. 

The basic equation for the spatially uniform membrane 
potential is: 

c d V =  F + I  (2) 
dt 

where C is the cell capacitance, V the membrane potential, 
F the membrane current, and I the external current. 

For the membrane of cat ganglion cells we describe F 
on the basis of patch-clamp experiments on solitary rat gan- 
glion cells (Lipton and Tauck 1987) and on cat ganglion cells 
(Kaneda and Kaneko 1991a,b). The following description 
of different current channels was based on ideas developed 
for salamander ganglion cells (Fohlmeister et al. 1990). The 
experiments on which the simulation of salamander gan- 
glion cells was based were performed at a temperature of 
22 ~ Therefore, most of the coefficients describing az and 
bx (characteristics for each channel) must be adapted with 
a temperature correction factor Q~0 to be applicable to cat 
ganglion cells. 

The membrane current F is described by the following 
set of formulas: 

F(V,  m,  h, n, e, A,  hA) = [Na + ZK + Ica + [A + fK.Ca (3a) 

INa = gNahm3(V - VNa) (3b) 

IK = 9Kn4(V -- VK) (3c) 

/Ca ---- 9CaC3(V - VCa) (3d) 

IA = 9Aa3hA(V -- VK) (3e) 

IK.C, = gK.ca[Ca]2/(1 + [Ca]Z)(v - VK) (3f) 

dCa 
- -0.000015Ica - 0.02([Ca] - 0.0001) (4) 

dt 

dx 
d---[ = (x (V)  - x ~ ) / r  (5a) 

where ~- = 1/(ax + bx) and x~ = ax/ (ax  + b~) with x de- 
noting the different channels (m, h, n, c, A, hA), C = 1.0 

#F/cm 2, and 9Na = 60.0 mS/cm 2. This conductance was set 
larger than the standard value because there is a higher den- 
sity of Na + channels in the axon hillock and initial segment 

(Wollner and Catterall 1986). 9Ca = 2.0 ms/cm 2, gK = 12.0 
mS/cm 2, 9A = 36.0 m/cm 2, gK.Ca = 0.05 mS/cm 2, ~/}qa = 
35 mY, and VK = --75 mV. VCa depends on the intracellular 
[Ca 2+] and was updated from the Nernst equation. 

By curve fitting to patch-clamp data from rat ganglion 
cells, and after temperature coefficient correction (Q10), the 
following coefficients ax and b~ were found: 

-O.05(V + 30),~ 
am = ~ --i~r (5b) 

b~ = 0.5e-(V+55)/JSQl o (5c) 

ah = O.O182e-(V+5~176 (5d) 

0.35 
bh - e_O.l(V+2O ) + 1 QlO (5e) 

-0 .004(V + 40) ,~ 
a,~ = ~ ; - - - - 1  ~1o (5f) 



304 

br, = O.025e-(V+5~176 (5g) 

-0 .003(V + 13) 
ac e -~ - 1 Ql0 (5h) 

b~ = O.0467e-(V+3s)/18Qlo (5i) 

-0.0011(V + 90),q 
aA = ~ ~ -  WlO (5j) 

bA = O.O0667e-(V+5~176 (5k) 

ahA = 0.105e-(V+v~176 (51) 

0.1 
bh~ - e_0.,(v+40 ~ + 1 Q10 (5m) 

The parameter space for (2)-(5), describing retinal gan- 
glion cell properties, has a very large dimension, and many 
complex bifurcations can probably be found. An interesting 
example is the influence of extracellular [Ca 2+] on the dy- 
namic membrane properties of the K + channel, as was shown 
for pancreas cells by Rinzel and Lee (1986). Because pan- 
creas cells have only a slow Ca 2+ activation, a small change 
in the extracellular [Ca 2+] has a strong influence on their 
spike generation properties. 

We integrated (2), (3), (4) and (5) (that were based on fit- 
ted patch-clamp data) and adjusted some of the coefficients 
to obtain the proper shape of the action potentials in our gan- 
glion cell recording. An example of the comparison between 
simulated action potentials and 20 superimposed spikes of 
the X-type cat ganglion cell is shown in Fig. 2. It can be 
seen that the equations accurately describe the shape of the 
measured spikes. All coefficients of the function F found in 
this way were subsequently fixed and not changed in fur- 
ther simulations. Therefore, the complexity of the equations 
describing spike generation did not increase the degrees of 
freedom in the final fits. We performed a similar analysis 
for other intracellularly recorded ganglion cells. The shape 
of action potentials, and hence the coefficients describing 
them, were mostly very similar, although there was some 
variation in the duration of action potentials. 

In cat retinal ganglion cells, activation is caused not only 
by a slow Ca 2+ channel as in pancreas cells, but mainly 
through a fast Na + channel. This fact has important conse- 
quences. In case the Na + channel is blocked, the change from 
non-oscillatory (a fixed point) to oscillatory (a limit cycle) 
behavior can be caused by only a 20% change in extracellu- 
lar [Ca2+], similar to pancreas cells (Rinzel and Lee 1986). 
When the Na + channel is opened, sensitivity to extracellular 
[Ca 2+] is significantly decreased, and an increase by a factor 
of 200 is needed to change membrane properties from non- 
oscillatory to oscillatory at the same depolarizing current. 
This phenomenon is an example of the stabilizing effect of 
channel interactions. It shows that for the simulation of spike 
generation, we have to take the actual complexity of channel 
interactions into account. 

2.4 Coupling between the membrane  
and generator potential oscillators 

To simulate spike generation of ganglion cells, a strong cou- 
pling between the van der Pol oscillator and the Hodgkin- 
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Fig. 2. Simulation results (dotted curves) obtained from integration of (6), 
(7) and (8) for three different depolarization currents (10, 20, 30 #A/cm 2) 
compared with experimental data (large diamonds'). Experimental data con- 
sist of 20 subsequent spikes at different depolarization levels. The sampling 
frequency of the experimental data was 10kHz. The integration step size 
for the simulations was 15 #s 

Huxley equations must be considered. The generator poten- 
tial forces the membrane"s nonlinear oscillator to change its 
state, which through a Hopf bifurcation may produce action 
potentials. Action potentials are generated in the axon hillock 
where there is a high density of voltage-gated Na + channels 
(Wollner and Catterall 1986) and thus the lowest threshold. 
Generated action potentials spread in two directions: along 
the axon to higher centers of the brain, and in the oppo- 
site direction, through the cell body and to its dendritic tree 
(Carras et al. 1992; Carras and Miller 1987). This retrograde 
activity (spreading back) causes an increase in the threshold 
for postsynaptic potentials. Therefore, the generator poten- 
tial not only acts as an external force for spike generation, 
but is also affected by the generated spikes. 

This interaction can be simulated by coupling, through 
a negative feedback, the slow G-potential oscillator to the 
much faster oscillator representing ganglion cell membrane 
properties. In such a model, one must consider not only the 
phase but also the amplitude of both oscillations to explain 
effects such as dying out of the fast oscillations (Aronson et 
al. 1990; Przybyszewski et al. 1993; e.g., Fig. 1 for 24Hz). 

The coupled oscillators can be described as: 

dz  = k (y  + x - x 3 / 3  - 9 2 ~ h  + dep) (6a) 
dt 

d9 
d~ = 1 / k : ( - x  + a + bcos(a~t/600)) (6b) 

C d V  = - F  + 9~z (6c) 
dt 

where the coefficients 91 and 9'2 describe the coupling be- 
tween the oscillators. 91 represents the external membrane 
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Table 1. The values of model parameters used to simulate the experimental 
results. Only the parameters that were changed to reproduce the findings 
for different spot sizes and stimulus frequencies (stim. freq.) are shown. 
Other parameter values are given in the text 

Stim. freq. Spot size (deg) a b k 91 0o2 dep 
2Hz 0.7 -0.35 0.8 8 0.35 1.53 2.1 

0.5 -0.35 0.8 8 0.52 1.64 2.1 
0.2 -0.35 0.8 8 1.2 2.2 2.1 

4Hz 0.7 -0.35 0.8 10 0.48 1.45 2.1 
0.5 -0.35 0.8 10 0.56 2.1 2.1 
0.2 -0.35 0.8 10 1.18 2.14 2.1 

8Hz 0.7 -1.67 1.75 16 0.4 5.9 12.7 
0.5 -1.67 1.75 16 0.55 5.9 12.7 
0.2 -1.67 1.75 16 1.2 6.0 12.7 

16Hz 0.7 -1.67 1.75 8 1.0 6.0 12.7 
0.5 -1.67 1.3 8 1.2 6.0 11.7 
0.2 -1.67 1.04 8 1.2 6.0 10.92 

current caused by the generator potential, and 002 describes 
the strength of negative feedback from the action potential 
(Vth value of the membrane potential above threshold) to 
the generator potential; dep is a DC shift of the intracellu- 
lar potential. Depending on the position of the synapse on 
the cell body or the dendritic tree, the values of 91 and 92 
can change, consequently changing the mode of oscillation 
(Przybyszewski et al. 1995). 

Figure 3 shows traces of the experimental responses, to- 
gether with fitted model simulations. Figure 1 provides a 
quantitative summary of the spike train responses in these 
recordings. To reproduce the presented experimental data, 
the parameters were chosen at first to simulate the most reg- 
ular bursting observed for a stimulation frequency of 8 Hz 
and a spot size of 0.7 deg (see Figs. 1, 3). In the next step, 
the stimulation frequency was changed and the van der Pol 
oscillator was decoupled to generate changes as described 
in our previous work (Przybyszewski et al. 1993). After re- 
coupling both oscillators, the coefficient of nonlinearity, k, 
of the van der Pol oscillator was increased. As in our previ- 
ous simulations, k was highest for a stimulation frequency 
of 8 Hz and decreased for the lower and higher light stimu- 
lus frequencies (Table 1). The other coefficients in the van 
der Pol oscillator were also adjusted to simulate the char- 
acteristic changes with stimulus frequency. Changes in spot 
size could be simulated by changing only the coupling co- 
efficients 91 and 92 (except for a frequency of 16Hz: see 
Table i). 

The parameters in Table 1 are related to the properties of 
the van der Pol oscillator, the coupling between both oscilla- 
tors and ganglion cell depolarization. Threshold coefficient 
a, forcing amplitude b, nonlinearity k, feedback coupling 
92 and depolarization (dep) strongly depend on the stimu- 
lus frequency. The values of a, b, 92 and dep fall into two 
groups: a first group for 2 and 4Hz, and a second group 
for 8 and 16 Hz. This could indicate that different processes 
underlie the response dynamics for low (2, 4 Hz) or high 
stimulus frequencies (8, 16Hz). The coefficient of nonlin- 
earity k, also shows a strong dependence on stimulus fre- 
quency. It is highest at a frequency of 8 Hz, which is the 
most nonlinear case, with regular spike bursting. Similar 
changes were observed in the power spectra of the generator 
potential (Przybyszewski et al. 1993), where the number of 
harmonics increased with stimulus frequency up to 8 Hz and 

then decreased for still higher temporal frequencies. A stim- 
ulus frequency of 8 Hz obviously has special meaning. The 
relaxation character of the oscillations around 8 Hz amelio- 
rates and accelerates synchronization between the different 
oscillators (Somers and Kopell 1993). 

The change in spot size is most strongly correlated to 
the feedforward coupling coefficient 91. The increase in gj 
with decreasing spot size might be related to the weight of 
synapses, which will be larger when a synapse is closer to 
the cell body. Synapses near the cell body should also give 
a larger back-coupling coefficient 92. This is supported by 
the results for lower stimulus frequencies (2, 4 Hz). These 
observations are in agreement with a Gaussian shape of the 
ganglion cell receptive field center. 

Quantitative and qualitative comparisons of simulated 
ganglion cell responses and experimental results are shown 
in Figs. 1 and 3. It can be seen that the final model accurately 
reproduces the many different response patterns. Simulation 
of very short bursts, as observed for a stimulus frequency 
of 8 Hz (spot sizes 0.5 and 0.7 deg), appeared most critical. 
Other types of bursting were simulated fairly well (Figs. 1A, 
3). The model could also reproduce the different types of 
irregularities in the spike bursts (Fig. I C, 3). 

3 Discussion 

3.1 Simulation of active membrane properties 

Hodgkin and Huxley (1952), in their famous paper, de- 
scribed and simulated action potential generation in the squid 
axon by a transient inward Na § current followed by an 
outward K § current. On the basis of these early studies, 
it was assumed that complex brain functions could be re- 
lated to the connectivity between simple neural ceils that 
were electrophysiologically similar to the squid axon (and 
motoneurons). In recent years, however, the development 
of patch-clamp, immunological, and molecular biological 
techniques has demonstrated many different voltage- and 
ligand-dependent ionic conductances in cell membranes of 
the mammalian central nervous system (Llinas 1988). A va- 
riety of so-called low-threshold Ca 2+ channels and up to 
12 varieties of outward K § currents have been found (for re- 
view see Llinas 1988). Other types of complexity are seen in 
computer simulation studies, showing that even simple and 
uniform membrane properties, such as those of the squid 
axon, could lead to complex spike patterns. Aihara et al. 
(1984), for example, found synchronization, quasi-periodic, 
and chaotic oscillations in both experiments on, and com- 
puter simulation of, a squid giant axon. From a theoretical 
point of view, "simple" Hodgkin-Huxley equations are too 
complex for a general analytical solution, and only some 
periodic solutions (different types of burst patterns) were 
classified (e.g. Carpenter 1979). Intracellular recordings and 
patch-clamp studies in retinal ganglion cells (Kaneda and 
Kaneko 1991a,b; Lipton and Tauck 1987; Lukasiewicz and 
Werblin 1988; Skaliora et al. 1993) show that their mem- 
brane properties are much more complex than those found 
in the squid axon. We have approximated cat ganglion cell 
membrane properties by eighth-order nonlinear differential 
equations similar to those proposed by Fohlmeister et al. 
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Fig. 3A,B. Experimental and 
simulated results compared for 
the ganglion cell of Fig. 1. A 
Recorded (r) and simulated re- 
suits (s) for a stimulus frequency 
of 8 Hz. Spot sizes in degrees 
are indicated in the figure. B 
Recorded (r) and simulated (s) 
responses for a spot size of 0.7 
deg and stimulus frequencies 4 
and 16Hz. The top two traces 
show the intracellular potential 
(int); the middle traces represent 
recorded and simulated spike- 
free generator potentials (gen); 
and the bottom traces represent 
the sinusoidal intensity modula- 
tion 

(1990) for salamander ganglion cells. Our parameters de- 
scribing the active membrane properties (5b) to (5m), are 
different due to differences in the body temperature between 
cat and salamander. We noticed, furthermore, that different 
cells may have action potentials with different shapes. This 
could be caused by different electrode positions in the gan- 
glion cell and/or different channel properties. An example 
of the latter is the heterogeneity of different K + channels, 
which arises in part from the large number of genes encod- 
ing different subunits and also from the assembly of  different 
subunits into heteromultimetric channels (e.g., Sheng et al. 
1993). Recently a new K + channel with slower dynamics 
was found in newborn rat solitary ganglion cells (Sucher 
and Lipton 1992). Villa and Blanco (1994) suggested that 
the contribution of different K + channels is a crucial fac- 
tor in determining the spike pattern, and that it could, for 
example, determine differences between X- and Y-type gan- 
glion cell spiking patterns. It seems, however, that there are 

differences in the membrane properties between adult cats 
and newborn rats. For example, the Ca 2+ channel in cats is 
identical to the high-threshold (L-type) channel (Kaneda and 
Kaneko 1991b) whereas in postnatal retinal ganglion cells in 
rats the low-threshold, transient (T-type) Ca 2+ channel also 
exists (Karschin and Lipton 1989). 

Given the complexity of  the many different types of ion 
channels, and their interactions, it is obvious that our model, 
which takes six different ion currents into account, can pro- 
vide only a first-order description of  the active membrane 
properties of cat retinal ganglion cells. The description is, 
however, realistic enough to account for the observed spike 
dynamics (Fig. 3), and for many of the previously described 
membrane properties. Our description consists of an eighth- 
order differential equation, but it should be noted that all its 
parameters were fixed in the final simulations. Differences 
in spike patterns for different temporal frequencies and for 
different spot sizes were accounted for by changing the state 
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of the van der Pol oscillator and its coupling to spike gen- 
eration. 

3.2 Coupling between generator potential 
and active membrane properties 

In our model, spike train activity of a ganglion cell was simu- 
lated by coupling the generator potential and the membrane 
properties, both of which can be described as oscillators. 
The van der Pol oscillator describes the generator potential 
fluctuations, and the integrated Hodgkin-Huxley equations 
describe the active membrane oscillator. In this approach it 
is assumed that the input current exciting the membrane at 
the axon hillock is proportional to the generator potential. 
Evidence from immunocytochemical techniques point to a 
high density of Na + channels in axon hillocks and axon ini- 
tial segments in the ganglion cell of adult frog and rat retina 
(Wollner and Catterall 1986). There is also evidence from 
other electrophysiological and computer simulation studies 
that the spike begins in the initial axon segment and spreads 
back into the soma as well as down the axon (Miller 1986; 
Carras and Miller 1987; Carras et al. 1992). This retrograde 
activity (back propagation to the dendrites) forms the bio- 
physical basis for the feedback coupling in our model. 

It is important to notice that this type of coupling will 
not perturb the limit cycles of the individual oscillators. The 
character of the membrane depolarization will be determined 
by its inherent properties and not by the strength of the cou- 
pling. This kind of coupling will influence the phase of oscil- 
lation without changing internal properties of the oscillators 
(Grasman 1987). 

We have shown previously (Przybyszewski et al. 1995) 
that, for a simple case when the membrane properties were 
modeled by the Bonhoeffer-van der Pol oscillator (after 
FitzHugh 1955), a change in the coupling coefficient (related 
to spike back-propagation) can lead to a change in the spike 
train pattern. Furthermore, a change in the coupling strength 
between two such oscillators could also change the "presy- 
naptic" oscillations. Generator-potential oscillations could 
thus be changed from chaotic to periodic and vice versa 
(Przybyszewski et al. 1995). Such observations are not too 
surprising, because many complicated processes have been 
observed by coupling two or more oscillators with similar 
nonlinear properties (Linsay and Cumming 1989; Baesens 
et al. 1991; Aronson et al. 1992). In the present paper we 
have shown that similar interactions can be accounted for 
if we use a biophysically realistic description of the active 
membrane properties, based on Hodgkin-Huxley equations. 
Furthermore, a realistic spike generator allows us to study 
the relation between oscillations in the generator potential 
and in the spike train in much more detail. 

within bursts. Such fast oscillations within bursts generally 
do not survive signal averaging, and were therefore consid- 
ered as noise in intraretinal processing. Consequently, it was 
assumed that the information was carried only by the mean 
spike frequency. We have shown that this "noise" can also be 
described as complex oscillations that depend on both stim- 
ulus parameters and retinal properties (Przybyszewski et al. 
1993). The fast oscillations might, therefore, also carry rele- 
vant information. Similar fast, oscillatory behavior has been 
observed in many parts of the visual cortex and it has been 
suggested that it plays an important role in visual perception 
(Singer 1993; Frien et al. 1994). One purpose of the present 
analysis was to investigate the possible sources of the os- 
cillations that show up in spike trains. In our experiments 
the mean number of spikes in each burst did not depend on 
spot size, and the mean spike frequency was largely inde- 
pendent of stimulation frequency (Fig. 1D). Also, the phase 
shift (delay) between stimulus and response did not depend 
on spot size (Fig. 1B). Yet, the different stimuli could clearly 
be distinguished if the spike patterns and their irregularities 
were taken into account. We showed that the relative burst 
duration and irregularity substantially change with flicker 
frequency and spot size (Fig. 1A,C). Some of these changes 
result directly from the oscillations observed in the generator 
potential and are presumably driven by intraretinal activity. 
Other types of oscillation resulted from interactions between 
the two oscillators, and could be changed by changing the 
coupling strength. Most of these oscillations could either 
be synchronized to the stimulus or non-synchronized. The 
present analysis of intracellular ganglion cell responses in- 
dicates that spike train oscillations are similar to those in the 
generator potential. This indicates that the irregular behavior 
in spike bursting may very well result from a deterministic 
process, simulated by the coupling of two oscillators. The 
inverse effect can occur where, for example, chaotic oscilla- 
tions in the G-potential are stabilized by the spike generating 
mechanism [e.g., Rajasekar and Laksmann (1991) investi- 
gated the possibilities of controlling chaos in a Bonhoeffer- 
van der Pol oscillator]. Such interactions might explain why 
the variability (noise) in spike trains in the lateral geniculate 
nucleus LGN is lower than that in the retina (Levine 1994; 
Mukherjee et al. 1994). 

In conclusion, regular versus irregular spike patterns and 
synchronized versus non-synchronized patterns may trans- 
mit intraretinal information to higher visual centers that can- 
not be recovered in averaged responses. Modeling of these 
real-time response properties increases our knowledge about 
transmission of visual information, and coding of informa- 
tion in general. 

3.3 Oscillations in the generator potential 
and in the spike train 

A sinusoidal stimulus induces two kinds of change in the 
ganglion cell's state: a component that follows the stimulus 
and, superimposed on this, fast oscillations. The slow com- 
ponent is related to bursting in each period of light stimu- 
lation, whereas the fast oscillations are related to changes 
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