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Abstract. We are still not in a position to understand most of the brain’s deeper 
computational properties.  As a consequence, we also do not know how brain 
processes are affected by nerve cell deaths in neurodegenerative diseases (ND).  
We can register symptoms of ND such as motor and/or mental disorders (de-
mentias) and even provide symptomatic relief, though the structural effects of 
these are in most cases not yet understood. Fortunately, with early diagnosis 
there are often many years of disease progression with symptoms that, when 
they are precisely monitored, may result in improved therapies. In the case of 
Parkinson’s disease, measurements of eye movements can be diagnostic. In or-
der to better understand their relationship to the underlying disease process, we 
have performed measurements of reflexive eye movements in Parkinson’s dis-
ease (PD) patients. We have compared our measurements and algorithmic diag-
noses with experts’ diagnoses. The purpose of our work was to find universal 
rules, using rough set theory, to classify how condition attributes predict the 
neurologist’s diagnosis. Prediction of individual UPDRS values only from ref-
lexive saccade (RS) latencies was not possible. But for n = 10 patients, the pa-
tient’s age, latency, amplitude, and duration of RS gave a global accuracy in in-
dividual patients’ UPRDS predictions of about 80%, based on cross-validation. 
This demonstrates that broadening the spectrum of physical measurements and 
applying data mining and machine learning (ML) can lead to a powerful bio-
marker for symptom progression in Parkinson’s. 

Keywords: Neurodegenerative disease, rough set, decision rules. 

1 Introduction 

The majority of neurologists use their experience based largely on statistical intuition to 
analyze symptom development in Parkinson’s disease (PD) patients. By applying  
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statistics based on analysis of large databases one can find significant information about 
the specificity of PD. But, due to a variety of cares, some results obtained even from the 
most prominent experts might be inconsistent. Applying standard, statistical averaging 
methods to such inconsistent information may give confusing results even leading to 
conclusions that a specific care does not effectively work in “averaged” PD patient. We 
might face similar challenges when studying factors that might lead to longer, better, and 
more active lives for people with Parkinson’s. Various neurologists may also interpret 
differently the meanings of the UPDRS that result different therapies. These problems are 
articulated in the popular statement  “No two people face Parkinson’s in quite the same 
way.” People vary substantially in their combination of symptoms, rate of progression, 
and reaction to treatment.  As mentioned, averaging patients’ symptoms to measure ef-
fects of different therapies can give very crude approximation of actual outcomes. If we 
want to improve such analyses, we must take into account the great variety of patients’ 
symptoms and inconsistent effects of care in different PD cases. 

For this reason, we propose to extend statistical analysis of PD outcomes using  
data mining and machine learning (ML) methods that give a more standardized inter-
pretation of individual patient’s symptoms and development. As a consequence it is 
possible that these methods may suggest specific treatments adjusted to different indi-
vidual patients that may lead to slowing of symptoms and improvements in quality of 
life.  Such analysis is proposed on the basis of learning algorithms that intelligently 
process data of individual patients in a standardized and specific ways. Our symptom 
classification method strives to emulate other means of complex object recognition 
such as those in visual systems.  The ability of natural vision to recognize objects 
arises in the afferent, ascending pathways that classify properties of objects’ parts 
from simple attributes in lower sensory areas, to more complex ones, in higher analyt-
ic areas. The resulting classifications are compared and adjust by interaction with 
whole object (“holistic”) properties (representing the visual knowledge) at all levels 
using interaction with descending pathways  [1] that was confirmed in animal expe-
riments [2]. These interactions at multiple levels between measurements and prior 
knowledge can help to differentiate individual patient’s symptoms and response 
treatments variability in a way similar to a new, complex object inspection [3, 4]. 
Machine learning algorithms for analyzing   subtle signal variations will hopefully 
lead to better analysis of individual patients’ conditions. 

Diagnostic findings of neurologists are based on interaction of their measurements 
and experience. In the most cases, they estimate values of the Hoehn and Yahr scale 
and the UPDRS (Unified Parkinson's Disease Rating Scale). However, these are not 
always precise and can be partially subjective. In our data mining approach we use the 
neurologist’s diagnosis as decision attributes and measurements as condition 
attributes. 

2 Methods 

Our experiments were performed on ten Parkinson Disease (PD) patients who had 
undergone the Deep Brain Stimulation (DBS) surgery mainly for treatment of their 
motor symptoms.  They were qualified for the surgery and observed postoperatively 
in the Dept. of Neurology and got surgical DBS implementation in the Institute of 
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Neurology and Psychiatry WUM [5].  We conducted horizontal RS (reflexive sac-
cades) measurements in ten PD patients during four sessions designed as S1: Me-
dOffDBSOff, S2: MedOffDBSOn, S3: MedOnDBSOff, S4: MedOnDBSOn. During 
the first session (S1) the patient was off medications (L-Dopa) and DBS stimulators 
was OFF; in the second session (S2) the patient was off medication, but the stimulator 
was ON; in the third session (S3) the patient was after his/her doses of L-Dopa and 
the stimulator was OFF, and in the fourth session (S4) the patient was on medication 
with the stimulator ON. Changes in motor performance, behavioral dysfunction, cog-
nitive impairment and functional disability were evaluated in each session according 
to the UPDRS. The reflexive saccades (RS) were recorded by head-mounted sacca-
dometer (Ober Consulting, Poland). We have used an infrared eye track system 
coupled with a head tracking system (JAZZ-pursuit – Ober Consulting, Poland) in 
order to obtain high accuracy and precision in eye tracking and to compensate possi-
ble subjects’ head movements relative to the monitor. Thus subjects did not need to be 
positioned in an unnatural chinrest.  

A patient was sited at the distance of 60-70 cm from the monitor with head sup-
ported by a headrest in order to minimize head motion. We measured fast eye move-
ments in response to a light spot switched on and off, which moved horizontally from 
the straight eye fixation position (0 deg) to 10 deg to the left or 10 deg to the right 
after arbitrary time ranging between 0.5–1.5 s. When the patient fixated eyes on the 
spot in the middle marker (0 deg) the spot then changed color from white to green, 
indicating a signal for performance of RS (reflexive saccades); or from white to red 
meaning a signal for performing AS (antisaccades). Then the central spot was switch-
ed off and one of the two peripheral targets, selected at random with equal probabili-
ty, was illuminated instead. Patients had to look at the targets and follow them as they 
moved in the RS task or made opposite direction saccades in the AS task. After mak-
ing a saccade to the peripheral target, the target remained on for 0.1 s after which 
another trial was initiated.  

In each test the subject had to perform 20 RS and 20 AS in a row in Med-off  
(medication off) within two situations: with DBS off (S1) and DBS on (S2).  In the 
next step the patient took medication and had a break for one half to one hour, and 
then the same experiments were performed, with DBS off (S3) and DBS on (S4). In 
this work we have analyzed only RS data using the following population parameters 
averaged for both eyes: delay mean (+/-SD –standard deviation); amplitude mean (+/- 
SD); max velocity mean (+/-SD); duration mean (+/-SD).   

2.1 Theoretical Basis 

The structure of data is an important point of our analysis. Here we represent it in the 
form of information system or a decision table. We define such an information system 
(after Pawlak [6]) as a pair S = (U, A), where U, A are nonempty finite sets called the 
universe of objects and the set of attributes, respectively. If a ∈ A and u ∈ U, the 
value a(u) is a unique element of V (where V is a value set).  

 
 



502 A.W. Przybyszewski et al. 

The indiscernibility relation of any subset B of A or IND(B), is defined [6] as fol-
lows: (x, y) ∈ IND(B) or xI(B)y if and only if a(x) = a(y) for every a ∈ B, where a(x) 
∈ V. IND(B) is an equivalence relation, and [u]B is the equivalence class of u, or a B-
elementary granule. The family of all equivalence classes of IND(B) will be denoted 
U/I(B) or U/B. The block of the partition U/B containing u will be denoted by B(u). 

We define a lower approximation of symptoms set X  U in relation to a symp-

tom attribute B as X = {u  U: [u]B  X }, and the upper approximation of X as 

X = {u  U: [u]B X }. In other words, all symptoms are classified into two 

categories (sets). The lower movement approximation set X has the property that all 
symptoms with certain attributes are part of X, and the upper movement approxima-
tion set has property that only some symptoms with attributes in B are part of X (for 

more details see [5]). The difference of X and X is defined as the boundary re-

gion of X i.e., BN B (X). If BN B (X) is empty set than X is exact (crisp) with respect to 
B; otherwise if BNB (X)  and X is not exact (i.e., it is rough) with respect to B. We 

say that the B-lower approximation of a given set X is union of all B-granules that are 
included in X, and the B-upper approximation of X is of the union of all B-granules 
that have nonempty intersection with X.    

The system S will be called a decision table S = (U, C, D) where C is the condition 
and D is the decision attribute [6]. In the table below (Table 2), as an example, the 
decision attribute D, based on the expert opinion, is placed in the last column, and 
condition attributes measured by the neurologist, are placed in other columns. On the 
basis of each row in the table, rules describing the condition of each patient can 
be proposed.  As the number of rules is same as the number of rows, these rules can 
have many particular conditions. The main concept of our approach is to describe 
different symptoms in different patients by using such rules. On the basis of such 
rules, using the modus ponens principle we wish to find universal rules to relate 
symptoms and treatments in different patients.    

However, symptoms even for the same treatments are not always the same;  
therefore our rules must have certain “flexibility”, or granularity, which can be 
interpreted as the probability of finding certain symptoms in a group of patients 
under consideration. The granular computation simulates the way in which neu-
rologists interact with patients. This way of thinking relies on the ability to perceive 
a patient’s symptoms under various levels of granularity (i.e., abstraction) in order to 
abstract and consider only those symptoms that serve to determine a specific treat-
ment and thus to switch among different granularities. By focusing on different levels 
of granularity, one can obtain different levels of knowledge, as well as a greater un-
derstanding of the inherent knowledge structure. Granular computing is thus essential 
in human intelligent problem solving behaviors in problem-specific tasks. 

We define the notion of a reduct B⊂A. The set B is a reduct of the information sys-
tem if IND(B) = IND(A) and no proper subset of B has this property. In case of deci-
sion tables decision reduct is a set B⊂A of attributes which cannot be further reduced 
and IND(B) ⊂ IND(d). A decision rule is a formula of the form (ai1 = v1) ∧...∧ ( aik = 

vk) ⇒ d = vd, where 1≤ i1 < ... < ik ≤ m, vi ∈ Vai . Atomic subformulas (ai1 = v1) are 
called conditions. We say that rule r is applicable to object, or alternatively, the object 

⊆
B ∈ ⊆

B ∈ ∩ φ≠

B B

φ≠
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matches rule, if its attribute values satisfy the rule. With a rule we can connect some 
numerical characteristics such as matching and support. We can replace the original 
attribute ai with new, binary attributes which indicate whether actual attribute value 
for an object is greater or lower than c (see [7]), we define c as a cut.  Thus a cut for 
an attribute ai ∈ A, with Vai will be a value c ∈ Vai. A template of A is a propositional 
formula vi ∈ Vai. A generalized template is a formula of the form ⁄(ai ∈ Ti) where Ti 
⊂ Vai. An object satisfies (matches) a template if for every attribute ai we have ai = vi 
where ai ∈ A.  The template is a natural way to split the original information system 
into two distinct sub-tables. One of these sub-tables consists of the objects that satisfy 
the template, while the second contains all others.  A decomposition tree is defined as 
a binary tree, whose every internal node is labeled by some template and external 
node (leaf) is associated with a set of objects matching all templates in a path from the 
root to a given leaf [8].  

In a second test we have divided our data into two or more subsets. By training on 
all but one of these subsets (the training set) using machine learning (ML), we ob-
tained classifiers that when applied to the remaining (test) set gave new numerical 
decision attributes, well correlated with neurologist decision attributes (based on a 
confusion matrix).   

3 Results 

The patients’ mean age was 51.1±10.2(SD) years, mean disease duration was 
11.3±3.2 years, mean UPDRS (related to all symptoms): S1: 66.6±13.8 S2: 
30.0±16.3; S3: 58.1±13.5; S4: 22.3±13.6; mean UPDRS III (related only to motor 
symptoms): S1: 42.7±11.3 S2: 17.8±10.6; S3: 34.1±10.8; S4: 10.9±8.3;  mean RS 
latencies: S1:291.2±93.1ms, S2: 199.6±39.5ms, S3: 232.9±82.7ms; S4: 183.2±30ms. 

Differences between latencies: S1-S2, and S1-S4 were statistically significant (t-
test p< 0.01) even when they were variable in individual patients (Fig. 1), while S1-S3 
was not statistically significant, this is similar to differences between UPDRS/UPDRS 
III: S1-S2, and S1-S4 were statistically significant (t< 0.001) and S1-S3 was not sta-
tistically significant. 

Other parameters of RS did not change significantly with the session number. 

3.1 Rough Set and Machine Learning Approach 

As described above we have used the RSES 2.2 (Rough System Exploration Program) 
[8] in order to find regularities in our data. At first our data was placed in the informa-
tion table as originally proposed by Pawlak [6].  

The full table has 15 attributes and 36 objects (measurements). In the Table 1 are 
values of 11 attributes for two patient: P# - patient number, age – patient’s age, sex – 
patient’s sex: 0 - female, 1 – male, t_dur – duration of the disease, S# - Session num-
ber, UPDRS – total UPDRS, HYsc – Hoehn and Yahr scale all measured by the neu-
rologist and saccades measurements:  SccDur  - saccade duration; SccLat  - saccade 
latency; SccAmp – saccade amplitude, and SccVel – saccade velocity.   
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28  54   1       8      1      58
28  54   1       8      2     40 
28  54   1       8       2     40
28  54   1       8       4     16
38  56   0      11     1      49 
38  56   0      11     2      22 
38  56   0      11     3      37 
38  56   0      11     4      12 
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In the next step, we have performed reduction of attributes (see reduct in the Me-
thod section) to a minimum number of attributes describing our results.   We have 
also created a discretization table: here single values of measurements were replaced 
by their range (as describe in the Method section on cut sets). As the result we have 
obtained the decision table (Table 2 –see below).  

Table 2. Part of the decision discretized-table 

 Pat#   age       t_dur S# HYsc  SccDur          SccLat           SccAmp         UPDRS 

"28  “(-Inf,55.0)"  *   1    *   "(-Inf,45.5)"   "(260.0,Inf)"   "(10.5,Inf)"   "(55.0,Inf)"  
"28  “(-Inf,55.0)"  *   2    *   "(45.5,Inf)"    "(260.0,Inf)"   "(10.5,Inf)"   "(22.5,55.0)"  
28  "(-Inf,55.0)"  *   2    *   "(45.5,Inf)"    "(-Inf,260.0)"  "(-Inf,10.5)"  "(22.5,55.0)"  

228   "(-Inf,55.0)" *   4    *   "(45.5,Inf)"    "(-Inf,260.0)"  "(-Inf,10.5)"  "(14.0,22.5)"  
"38   "(55.0,Inf)"  *   1    *   "(-Inf,45.5)"     "(260.0,Inf)"  "(10.5,Inf)"  "(22.5,55.0)"  
"38   "(55.0,Inf)"  *   2    *   "(45.5,Inf)"     "(-Inf,260.0)"  "(10.5,Inf)"  "(14.0,22.5)"  
"38   "(55.0,Inf)"  *   3    *   "(-Inf,45.5)"    "(260.0,Inf)"   "(10.5,Inf)"  "(22.5,55.0)"  
"38   "(55.0,Inf)"  *   4    *   "(-Inf,45.5)"    "(-Inf,260.0)" "(-Inf,10.5)"  "(-Inf,14.0)" 

In the first column is the patient’s number, in the second the patient’s age divided 
in our group into patients below (Pat#28) or above (Pat#38) 55 years of age; disease 
duration and Hoehn and Yahr scale were not considered important (stars), along with 
session number; and other parameters of saccades were also divided into ranges. It is 
interesting to note how the UPDRS were divided into different ranges: above 55, 22.5 
to 55, 14 to 22.5, and below 14 (the last column).   On the basis of this decision table 
we can write the following rule: 

 ('Pat'=28)&('age'="(-Inf,55.0)”)&('Sess'=1)&('SccDur'=”(-Inf,45.5)")&('SccLat'  
   =”(260.0,Inf)")& (' SccAmp')="(10.5,Inf)")  => ('UPDRS'="(55.0,Inf)"  )  (1) 

We read this formula above (eq. 1), as stating that each row of the table (Table 1) 
can be written in form of this equation (eq. 1). It states that if we evaluate patient #28 
and with age below 55 and in session #1 and with saccade duration below 45.5 and 
saccade latency above 260 and … and saccade amplitude above 10.5 then patient’s 
UPDRS is above 55.  

These equations are parts of a data mining system bases on rough set theory [6].  
We have tested our rule using the machine-learning concept. Randomly dividing our 
data into 6 groups, we took 5 groups as training set and tested the fourth. By changing 
groups belonging to the training and test sets, we have removed the effect of acciden-
tal group divisions. The results of each test were averaged – thus we have performed a 
6-fold cross-validation. The results are gives as a confusion matrix (Table 3). As a 
machine-learning algorithm we have used the decomposition tree (see Methods). 

We have performed several tests trying to predict UPDRS values on the basis of 
measures saccades properties. As changes in UPDRS and saccade latencies were 
similar when the session number was changed (Fig.2) we tried to predict individual 
UPDRS values only from RS latencies. Here however, we did not get good results.  
When to the session number, patient age, RS: latency, amplitude, and duration were 
added, the global accuracy in UPRDS prediction was about 80% (ML: decomposition 
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tree, cross-validation-method).  This is good result for such a small population show-
ing power of the data mining and machine learning methods in this type of neurologi-
cal analysis. As UPDRS is a standard measurement in PD, the above results give the 
possibility of at least partly replace or augmenting neurologist estimates with the eye 
movements (EM) measurement results.  

Table 3. Confusion matrix for different session numbers (S1-S4) 

    Predicted 

Actual 

 55.0, 
Inf 

22.5, 
55.0 

-Inf,  
14.0 

14.0, 
22.51 

ACC 

55.0, Inf 0.3 0.3 0 0 0.2 

22.5, 55.0 0 1.5 0 0 1 

-Inf, 14.0 0.0 0.3 0 0.2 0 

14.0, 22.5 0 0 0 0 0 

TPR 0.2 0.8 0 0  

TPR: True positive rates for decision classes, ACC: Accuracy for decision classes: 
the global coverage was 0.44, the global accuracy was 0.79, coverage for decision 
classes: 0.2, 0.5, 0.3, 0.0.  

Another question that result is, whether EM can help to estimate possible effects of 
different treatments in individual patients? In order to demonstrate an answer, we 
have removed EM measurements and added other typically measured attributes such 
as: the Schwab and England ADL Scale, and UPDRS III and UPDRS IV to the deci-
sion table and tried to predict the effects of different treatments as represented by 
sessions 1 to 4 (medication and stimulation effects).  Table 4 is a part of full decision 
discretized-table with decision attributes – the session number placed in the last col-
umn. On the basis of this table we have formulated rules using a rough set system and 
tested them with randomly divided data into 6 groups. We took 5 as training set (us-
ing ML protocol) and tested with sixth. In order to remove effect of the accidental 
division we have exchanged training and test groups and averaged results placed in 
the confusion matrix (Tabel 5).     

Table 4. Part of  the decision  discretized-table without eye movement measurements 

 Pat#               age       t_dur   SEngs       UPDRS III    UPDRS IV   UPDRS   Sess# 

"(27.5,41.5)" "(43.5,Inf)" * "(-Inf, 75)" "(36.0,46.0)"  "(10.5,Inf)" "(1.75,Inf)"      1  
"(27.5,41.5)" "(43.5,Inf)" * "(75, Inf)" "(13.0,26.0)"  "(10.5,Inf)" "(-Inf,1.75)"      2  

 "(27.5,41.5)" "(43.5,Inf)" * "(75, Inf)"   "(-Inf,6.0)"    "(10.5,Inf)" "(-Inf,1.75)"    4  

 "(27.5,41.5)" "(43.5,Inf)" * "(-Inf, 75)" "(26.0,36.0)"  "(10.5,Inf)" "(1.75,Inf)"     1  

 "(27.5,41.5)" "(43.5,Inf)" * "(75, Inf)"  "(13.0,26.0)"  "(10.5,Inf)" "(-Inf,1.75)"    2  

 "(27.5,41.5)" "(43.5,Inf)" * "(-Inf, 75)" "(13.0,26.0)"  "(10.5,Inf)" "(1.75,Inf)"     3  

 "(27.5,41.5)" "(43.5,Inf)" * "(75, Inf)"   "(-Inf,6.0)"    "(10.5,Inf)"  "(-Inf,1.75)"    4 
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Table 5. Confusion matrix for different session numbers (S1-S4) 

    Predicted 

Actual 

  1 2 3 4 ACC 

1 0.5 0 0.5 0 0.3 

2 0 0.5 0 0.3 0.4 

3 0.8 0 0.2 0 0.2 

4 0 0.5 0 0.5 0.4 

TPR 0.3 0.3 0.2 0.4   

 
TPR: True positive rates for decision classes, ACC: Accuracy for decision classes: 

the global coverage was 0.64, the global accuracy was 0.53, coverage for decision 
classes: 0.5, 0.5, 0.75, 0.7.  

We have performed the same procedures once more to test results of patients’ eye 
movement influence on our predictions.    

Table 6. Part of  the decision  discretized-table with eye movement measurements 

 Pat#          age    SccVel      UPDRS III      HYsc     SccDur SccLat  SccAmp  Ses# 

"(27.5,34.5)"*"(458.5,578.0)" "(36, Inf)" "(1.75,Inf)" "(38,Inf)" "(308.5,Inf)" *      1  

"(27.5,34.5)"*"(458.5,578)" "(11.5,36)" "(-Inf,1.75)" "(38.0,Inf)" "(-Inf,308.5)" *  2  

 "(27.5,34.5)"*"(341.5,403)" "(-Inf,11.5) " "(-Inf,1.75)" "(38,Inf)" "(-Inf,308.5)" * 4  

 "(34.5,Inf)" * "(665.5,Inf)" "(11.5,36.0)" "(1.75,Inf)" "(38.0,Inf)" "(-Inf,308.5)" * 1  

 "(34.5,Inf)" * "(458.5,578)""(11.5,36)""(-Inf,1.75)" "(38.0,Inf)" "(-Inf,308.5)" *   2  

 "(34.5,Inf)" * "(578.0,665.5)""(11.5,36)""(1.75,Inf)" "(38.0,Inf)" "(308.5,Inf)" *   3  

  "(34.5,Inf)"*"(458.5,578)""(-Inf,11.1)" "(-Inf,1.75)" "(38, Inf)" "(-Inf,308.5)"  *  4 

Table 7. Confusion matrix for different session numbers (S1-S4) 

    Predicted 

Actual 

  1 2 3 4 ACC 

1 0.8 0 0 0 0.7 

2 0 0.7 0 0 0.7 

3 0.2 0 0.8 0 0.6 

4 0 0.2 0 0.3 0.25 

TPR 0.7 0.7 0.6 0.25   

 
TPR: True positive rates for decision classes, ACC: Accuracy for decision classes, 

the global coverage was 0.5; the global accuracy was 0.91; coverage for decision 
classes: 0.6, 0.6, 0.6, 0.25.  
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As above, results of each test were averaged in a 6-fold cross-validation giving as   
the confusion matrix (Table 3). As a machine-learning algorithm we have used the 
decomposition tree (see Methods). 

In summary, two last results have demonstrated that adding eye movement (EM) 
results to classical measurements performed by the most neurologists, can result in 
improved predictions of disease progression measured, as measured by improvement 
in global accuracy from 0.53 to 0.91.  The EM measurements may also partly replaces 
neurological measurements such as the UPDRS, as global accuracy of the total 
UPDRS predictions taken from EM data was 0.79 for the above 10 PD patients. 

4 Discussion 

In current therapeutic protocols, even with the large numbers of approaches and clini-
cal trials, there have still been few conclusive results on therapeutic identification and 
measurement of PD symptoms. There are multiple reasons for such failures: first, the 
shortcomings of current disease models in target validation and testing; second, diffi-
culties in choosing clinical endpoints; third difficulties in finding sensitive biomarkers 
of disease progression. One clear problem is that the disease starts long before motor 
symptoms are observed, and another is that individual pathological mechanisms form 
a large spectrum. We have given an example comparing classical neurological diag-
nostic protocols with a new approach. The main difference between these types of 
measures is in their precision and objectivity. Our approach is doctor-independent and 
can be performed automatically. In the near future it may help in transforming some 
hospital-based to home-based treatments. In this scenario it will be possible to meas-
ure patient symptoms at home, and send these for consultation by neurologists. Such 
methods will be faster, more precise and can help with more frequent measurements. 
In consequence, they may help not only to determine more objectively a patient’s 
symptoms, but also to follow up disease progression in more frequent intervals, some-
thing not possible currently, with the limited time resources of neurologists. If we 
obtain such information, it may lead to more appropriate therapies and the slowing 
down of disease progression. It is one of the purposes of this work to try to extract 
knowledge from symptoms in order further on to develop more appropriate therapies 
to stem disease progression. 

5 Conclusions 

We have presented a comparison of classical statistical averaging methods for PD 
diagnosis with rough set (RS) approaches. We used processed neurological data from 
PD patients in four different treatments and we have plotted averaged effects of the 
medication and brain stimulation in individual patients. As these effects are strongly 
patient dependent they could not give enough information to predict new patient’s 
behavior. The RS and ML approaches are more universal giving general rules for 
predicting individual patient responses to treatments as demonstrated in UPDRS pre-
dictions.  
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