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Abstract. Humans effortlessly classify and recognize complex patterns even if 
their attributes are imprecise and often inconsistent. It is not clear how the brain 
processes uncertain visual information. We have recorded single cell responses 
to various visual stimuli in area V4 of the monkey’s visual cortex.  Different 
visual patterns are described by their attributes (condition attributes) and placed, 
together with the decision attributes, in a decision table. Decision attributes are 
divided into several classes determined by the strength of the neural responses.   
Small cell responses are classified as class 0, medium to strong responses are 
classified as classes 1 to n-1 (min(n)=3 ), and the strongest cell responses are 
classified as class n.  The higher the class of the decision attribute the more 
preferred is the stimulus. Therefore each cell divides stimuli into its own family 
of equivalent objects.   

By comparing responses of different cells we have found related concept 
classes. However, many different cells show inconsistency between their 
decision rules, which may suggest that parallel different decision logics may be 
implemented in the brain. 

Keywords: visual brain, imprecise computation, bottom-up, top-down processes, 
neuronal activity.  

1   Introduction 

We define after Pawlak [1] an information system as S = (U, A), where U, A are 
nonempty finite sets called the universe of objects and the set of attributes, 
respectively.  If a ∈  A and u ∈  U, the value a(u) is a unique element of V (where V 
is a value set). The indiscernibility relation of any subset B of A or I(B), is defined [3] 
as follows: (x, y) ∈  I(B) or xI(B)y if and only if a(x) = a(y) for every a ∈  B, where 
a(x) ∈  V.  I(B) is an equivalence relation, and  [u]B is the equivalence class of u, or a 
B-elementary granule. The family of all equivalence classes of I(B)  will be denoted 
U/I(B) or U/B. The block of the partition U/B containing u will be denoted by B(u). 
The concept X ⊆  U is B-definable if for each u ∈  U either [u]B ⊆  X or [u]B ⊆  U\X.  

B X = {u ∈  U: [u]B ⊆  X } is a lower approximation of X.  The concept X ⊆  U is B 

indefinable if there exists u ∈  U such that [u]B ∩ X φ≠ }. B X = {u ∈  U: 

[u]B ∩ X φ≠ } is an  upper approximation of X.  The set BN B (X) = B X - B X will be 

referred to as the B-boundary region of. X If the boundary region of X is the empty set 
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than X is exact (crisp) with respect to B; otherwise if BNB(X) φ≠  X is not exact (i.e., 

it is rough) with respect to B. We say that the B-lower approximation of a given set A 
is the set of union of all B-granules that are included in the set A, and the B-upper 
approximation of A is a set of the union of all B-granules that have nonempty 
intersection with A. We will distinguish in the information system two disjoint classes 
of attributes: condition and decision attributes. The system S will be called a decision 
table S = (U, C, D) where C and D are condition and decision attributes. 

In this paper the universe U will be assumed to be all visual patterns that are 
characterized by their attributes C. The purpose of our research is to find how these 
objects are classified in the brain. Therefore we are looking to determine D on the 
basis of a single neuron recording from the visual area in the brain. 

Imprecise reasoning is a characteristic of natural languages and is related to human 
decision-making effectiveness [2]. The brain, in contrast to the computer, is 
constantly integrating many asynchronous parallel streams of information [3], which 
help in its adaptation to the environment. Most of our knowledge about the function 
of the brain is based on electrophysiological recordings from single neurons. In this 
paper we will describe properties of cells from the visual area V4. This intermediate 
area of the ventral stream mediates shape perception, but different laboratories  
propose different often-contradictory hypotheses about properties of V4 cells. We 
propose the use of rough set theory (Pawlak, [1]) to classify concepts as related to 
different stimuli attributes. We will show several examples of our method. 

2   Method 

Results of electrophysiological experiments are placed into the following decision 
table. Neurons are identified using numbers related to a collection of figures in [4]. 
Different measurements of the same cell are denoted by additional letters (a, b, …) 
and placed in the first column adjacent to the cell number. The next columns of the 
table describe stimulus attributes and their values.  Stimulus attributes are as 
follows:  

1. orientation in degrees appears in the column labeled o, and orientation 
bandwidth is labeled by ob. 

2. spatial frequency is denoted as  sf , and spatial frequency bandwidth is sfb  
3. x-axis position is denoted by xp  and the range of x-positions is xpr  
4. y-axis position is denoted by yp and the range of y-positions is ypr  
5. x-axis stimulus size is denoted by xs 
6. y-axis stimulus size is denoted by ys 
7. stimulus shape is denoted by s, with values of s  are defined as follows: for 

grating  s=1, for vertical bar s= 2, for horizontal bar  s= 3, for disc s= 4, for 
annulus  s=5. 

Thus the full set of stimulus attributes is expressed as B = {o, ob, sf, sfb, xp, xpr, 
yp, ypr, xs, ys, s}. The cell’s responses r are divided into several classes are placed in 
the last column of the table.  
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3   Results 

We have analyzed the experimental data from several neurons recorded in the 
monkey’s V4 [4].  Below we show a modified figure from the above work (Fig.1), 
along with the associated decision table (table 1). 

 

 

Fig. 1. Curves represent approximated responses of a cell from area V4 to vertical (C), and 
horizontal (D) bars. Bars change their position along the x-axis (Xpos) or along the y-axis 
(Ypos). Responses of the cell are measured in spikes/sec. Mean cell responses ± SE are 
marked in C and D plots.  Cell responses are divided into 5 ranges (classes) but for simplicity 
only two horizontal lines are plotted. On the right are schematic representations of cell response 
on the basis of Table 1. Vertical and horizontal bars in certain x- and y-positions give 
significant responses: class 1 - upper left schematic, class 2 – upper right, class 3 - lower left, 
and class 4 – lower right schematic. These schematics represent decision rules for each 
response class.   

On the basis of the decision table we have made a schematic of the optimal stimulus 
for this cell (Fig. 1, right side).  Fig. 1 (left side) shows the cell’s responses to the 
stimulus, which was a long narrow bar with vertical (Fig.1 C) or horizontal (Fig.1 
D) orientation. The cell’s responses are divided into strength classes (horizontal 
lines in plots of Fig. 1) with stimuli attributes placed in the decision table (Table 1).   
This table is converted into a schematic (right side of Fig. 1), which can be read as 
the decision rules related to four classes of cell responses. On the basis of this 
schematic the receptive field can be divided into smaller areas with different 
preferences, and these subfields can be stimulated independently as is shown in  
Fig. 2.  Table 2 divides data from Fig. 2 and from Fig. 5 in [4] into decision classes, 
which determine equivalent classes of stimuli as shown on the schematic in lower 
part of Fig. 2. 
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Table 1. Decision table for the cell shown in Fig. 1. Attributes ob, sf, sfb were constant and are 
not presented in the table. Cell responses r below 10 spikes/s were defined class 0, above 10 
spikes/s is defined as class 1, above 20 sp/s – class 2, above 40 sp/s - class 3, and above 50 sp/s 
– class 4. 

Cell  o xp xpr yp ypr xs ys s r 
12c 90 -0.6 1.4 0   0 0.4 4 2 1 
12c1 90 -0.6 1.2 0   0 0.4 4 2 2 
12c2 90 -0.6 0.6 0  0 0.4 4 2 3 
12c3 90 1.35 1.3 0 0 0.4 4 2 1 
12c4 90 1.3 1 0 0 0.4 4 2 2 
12c5 90 1.3 0.5 0 0 0.4 4 2 3 
12c6 90 -0.6 0 0 0 0.4 4 2 4 
12d 0 0 0 -2 1.8 4 0.4 3 1 
12d1 0  0 0 -2.2 1.6 4 0.4 3 2 
12d2 0 0 0 -2.2 1.2 4 0.4 3 3 
12d3 0 0 0 0.1 1.8 4 0.4 3 1 
12d3 0 0 0 0.15 1.3 4 0.4 3 2 
12d4 0 0 0 0.15 0.7 4 0.4 3 3 
12d5 0 0 0 -2.2 0.9 4 0.4 3 4 

 

 

 

Fig. 2 Modified plots on the basis of [4] (upper plots), and their representation on the basis of 
table 2 (lower plots).  C-F Curves represent responses to different orientations of one V4 cell 
when its subfields (their positions are shown in plots) are covered with 2 degree grating discs 2 
degrees apart in a 6 degree receptive field. Lower plots: Gray circles indicate cell response 
below 10 spikes/s. Plots on the left are related to class 1, in the middle – class 2, and plots on 
the right are related to responses of class 3.  
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Table 2.  Decision table for one cell shown in Fig. 2 (Figs. 3, 5 in [4]). Attributes xpr, ypr, s are 
constant and are not presented in the table. Cell # 3* from Fig. 3, cell# 5* from Fig. 5 cell #35* 
combined Figs. 3 and 5. Cell responses r below 10 spikes/s were defined as class 0, 10 - 20  
spikes/s is defined as class 1, 20 - 40 sp/s – class 2, above 40 sp/s - class 3. 

Cell  o ob sf sfb xp yp r 
35c0 180 180 2.5 1.5 0 0 1 
3c 172 105 2 0 0 0 2 
3c1 10 140 2 0 0 0 2 
3c2 180 20 2 0 0 0 3 
35d0 180 180 2.5 1.5 0 0 1 
3d 172 105 2 0 0 -2 2 
3d1 5 100 2 0 0 -2 2 

3d2 180 50 2 0 0 -2 3 
35e 180 10 2 0 -2 0 1 
35f0 180 180 2.5 1.5 0 2 1 
3f 170 100 2 0 0 2 2 
3f1 10 140 2 0 0 2 2 
3f2 333 16 2 0 0 2 3 
5a 180 0 2.3 2.6 0 -2 2 
5b 180 0 2.5 3 0 2 2 
5c 180 0 2.45 2.9 0 0 1 
5c1 180 0 2.3 1.8    0 0 2 

 
In order to find general decision rules (decision table reduct) we introduce a tolerance 
on a certain attribute values (discretization problem): all ob values with 0 < ob < 60 
we denote as obn (narrow orientation bandwidth), ob > 100 we denote as obw (wide 
orientation bandwidth), we write sfbn  if 0 < sfb < 1 (small bandwidth), and  sfbw if sfb 
>1.  The Decision rules are as follows:   

 

DR1: obn ∧  xp0 →  r3, DR2: obn ∧  xp-2 →  r1, 
DR3: obw ∧  sfbn →  r2, DR4: obw  ∧  sfbw →  r1 ‚ 
Notice that Figs 1 and 3 show possible configurations of the optimal stimulus. 
However, they do not take into account interactions between several stimuli, when 
more than one subfield is stimulated. In addition there are Subfield Interaction 
Rules: 
SIR1: facilitation when stimulus consists of multiple bars with small distances (0.5-1 
deg) between them, and inhibition when distance between bars is 1.5 -2 deg. 
SIR2: inhibition when stimulus consists of multiple similar discs with distance 
between them ranging from 0 deg (touching) to 3 deg. 
SIR3: Center-surround interaction, which is described below in detail. 
 

The next part is related to the center-surround interaction SIR3. The decision table 
(Table 3) shows responses of 8 different cells stimulated with discs or annuli (Fig. 10 
in [4]). In order to compare different cells, we have normalized their optimal 
orientation and denoted it as 1, and removed them from the table. We have introduced 
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Table 3. Decision table for eight cells comparing the center-surround interaction. All stimuli 
were concentric discs or annuli with xo – outer diameter, xi – inner diameter. All stimuli were 
localized around the middle of the receptive field, so that ob = xp = yp = xpr = ypr = 0 were 
fixed  and we did not put them in the table. Cell responses r below 20 spikes/s were defined as 
class 0, 20 – 40 sp/s is defined as class 1, 40 – 100 sp/s – class 2, above 100 sp/s - class 3. 

 
Cell  sf sfb xo xi s r 
101 0.5 0 7 0 4 0 
101a 0.5 0 7 2 5 1 
102 0.5 0 8 0 4 0 
102a 0.5 0 8 3 5 0 
103 0.5 0 6 0 4 0 
103a 0.5 0 6 2 5 1 
104 0.5 0 8 0 4 0 
104a 0.5 0 8 3 5 2 
105 0.5 0 7 0 4 0 
105a 0.5 0 7 2 5 1 
106 0.5 0 6 0 4 1 
106a 0.5 0 6 3 5 2 
107 0.5 0.25 6 0 4 2 
107a 0.9 0.65 6 3 5 2 
107b 3.8 0.2 6 3 5 2 
107c 2.3 0.7 6 3 5 3 
107d 2 0 6 2 5 2 
107e 2 0 4 0 4 1 
108 0.5 0 6 0 4 1 
108a 1.95 0.65 4 0 4 2 
108b 5.65 4.35 6 2 5 2 
108c 0.65 0.6 6 2 5 3 

 
a tolerance on values of sf. We have denoted as sflow (low spatial frequency) all sf < 1, 
as sfm for 1.7 < sf <  3.5, and sfh for 4 < sf . We have calculated if the stimulus 
contains sflow, sfm or sfh by taking from the table sf ± sfb and skipping sfb. For 
example, in the case of 108b the stimulus has sf: 8.6 ± 7.3 c/deg, which means that 
sfm or sfh  are values of the stimulus attributes.  We can also skip s, which is 
determined by values of xo and xi. 

Stimuli used in these experiments can be placed in the following categories: 
 

Yo = |sflow xo7 xi0| = {101, 105}; Y1 = | sflow xo7 xi2| = {101a, 105a}; Y2 = |sflow xo8 
xi0| = {102, 104}; Y3 = | sflow xo8 xi3| = {102a, 104a};  Y4 = | sflow xo6 xi0| = {103, 
106, 107, 108, 20a}; Y5 = |sflow xo6 xi2| = {103a, 106a, 107a, 108b, 20b}; Y6 = |sflow 
xo8 xi0| = {104, 108a}; Y7 = |sflow xo8 xi3| = {104a, 108a}; Y6 = |sflow xo4 xi0| = {107e, 
108a}. 

These are equivalence classes for stimulus attributes, which means that in each 
class they are indiscernible IND(B). We have normalized orientation bandwidth to 0 
in {20a, 20b} and spatial frequency bandwidth to 0 in cases {107, 107a, 108a, 108b}.  
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There are four classes of responses, denoted as r0, r1, r2 , r3. Therefore the expert’s 
knowledge involves the following four concepts: 

 

| ro | = {101, 102, 102a, 103, 104, 105}, | r1 | = {101a, 103a, 105a, 106, 107b, 108} 
| r2 | = {104a, 106a, 107, 107a, 107b, 107d, 108a, 108b}, | r3 | = {107c, 108c}, 
which are denoted as Xo, X1, X2 , X3. 

We want to find out whether equivalence classes of the relation IND{r} form the 
union of some equivalence relation IND(B), or whether B ⇒ {r}. 

We will calculate the lower and upper approximation [1] of the basic concepts in 
terms of stimulus basic categories: 

 

B Xo = Yo = {101, 105}, B Xo = Yo ∪  Y2 ∪  Y3 ∪  Y4 = {101, 105, 102, 104, 102a, 

104a, 103, 106, 107, 108}, 

B X1 = Y1 ∪  Y5 = {101a, 105a, 103a}, B X1 = Y1 ∪  Y5 ∪  Y6 ∪  Y4 = {101a, 

105a, 103a, 106, 108, 107e}, 

B X2 = 0, B X2 = Y3 ∪  Y4 ∪  Y5  ∪  Y6  = {102a, 104a, 103a, 107a, 108b, 106a,  

20b, 103, 107, 106, 108, 20a, 107b, 108a} 
Concept 0 and concept 1 are roughly B-definable, which means that only with some 
approximation can we say that stimulus Y0 did not evoke a response (concept 0) in 
cells 101, 105. Other stimuli Y2, Y3 evoked no response (concept 0) or weak (concept 
1) or strong (concept 2) response. This is similar for concept 1. However, concept 2 is 
internally B-undefinable. Stimulus attributes related to this concept should give us 
information about cell characteristics, but data from table 3 cannot do it. We can find 
quality [1] of our experiments by comparing properly classified stimuli 
POSB(r)={101, 101a, 105, 105a} to all stimuli and responses: 

}{rγ =|{101,101a,105,105a}|/|{101,101a, …,20a,20b}| = 0.2. 

We can also ask what percentage of cells we have fully classified. We obtain 
consistent responses from 2 of 9 cells, which means that  }{cellsγ  = 0.22. This is 

related to the fact that for some cells we have tested more than two stimuli. What is 
also important from an electrophysiological point of view is there are negative cases. 
There are many negative instances for the concept 0, which means that in many cases 
this brain area responds to our stimuli; however it seems that our concepts are still 
only roughly defined. We have the following decision rules: 
 

DR5: xo7 xi2 s5 →  r1; DR6: xo7 xi0 s4 →  r0, DR7: xo8 xi0 s4 →  r0. 
They can be interpreted as the statement that a large annulus (s5) evokes a weak 
response, but a large disc (s4) evokes no response. However, for certain stimuli there 
is inconsistency in responses of different cells (Table 3): 103: xo6 xi0 s4 →  r0, 106: xo6 
xi0 s4 →  r1.  

4   Discussion 

The purpose of our study has been to determine how different categories of stimuli 
and particular concepts are related to the responses of a single cell. We test our theory  
 



302 A.W. Przybyszewski 

 

Fig. 3. In their paper David et al. [5] stimulated V4 neurons (medium size of their receptive 
fields was 10.2 deg) with natural images. Several examples of their images are shown above. 
We have divided responses of cells into three concept categories. The two images on the left 
represent cells, which give strong responses, related to our expertise concept 2. The two images 
in the middle evoke medium strength responses and they are related to concept 1. The two 
images on the right gave very weak responses; they are related to concept 0.  

 
on a set of data from David et al. [5], shown in Fig. 3. We assume that the stimulus 
configuration in the first image on the left is similar to that proposed in Fig. 2; 
therefore it should give a strong response. The second image from the left can be 
divided into central and surround parts. The stimulus in the central disc is similar to 
that from Fig. 2 (DR1). Stimuli on the upper and right parts of the surround have a 
common orientation and a larger orientation bandwidth obw in comparison with the 
center (Fig. 2). These differences make for weak interactions between discs as in SIR2 
or between center-surround as in SIR3. This means that these images will be related to 
concept 2. Two middle images show smaller differences between their center and 
surround. Assuming that the center and surround are tuned to a feature of the object in 
the images, we believe that these images would also give significant responses. 
However, in the left image in the middle part of Fig. 3, stimuli in the surround consist 
of many orientations (obw) and many spatial frequencies (sfbw); therefore medium 
class response is expected DR4 (concept 1). The right middle image shows an 
interesting stimulus but also with a wide range of orientations and spatial frequencies 
DR4. There are small but significant differences between center and surround parts of 
the image. Similar rules as to the previous image can be applied. In consequence brain 
responses to both images are related to concept 1. In the two images on the right there 
is no significant difference between stimulus in the center and the surround. Therefore 
the response will be similar to that obtained when a single disc covers the whole 
receptive field: DR6, DR7.  In most cells such a stimulus is classified as concept 0. 

In summary, we have showed that using rough set theory we can divide stimulus 
attributes in relationships to neuronal responses into different concepts. Even if most 
of our concepts were very rough, they determine rules on whose basis we can predict 
neural responses to new, natural images. 
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