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Abstract: Neurodegenerative diseases (NDs) such as Alzheimer’s Disease (AD) and Parkinson’s

Disease (PD) are devastating conditions that can develop without noticeable symptoms, causing

irreversible damage to neurons before any signs become clinically evident. NDs are a major cause

of disability and mortality worldwide. Currently, there are no cures or treatments to halt their

progression. Therefore, the development of early detection methods is urgently needed to delay

neuronal loss as soon as possible. Despite advancements in Medtech, the early diagnosis of NDs

remains a challenge at the intersection of medical, IT, and regulatory fields. Thus, this review

explores “digital biomarkers” (tools designed for remote neurocognitive data collection and AI

analysis) as a potential solution. The review summarizes that recent studies combining AI with

digital biomarkers suggest the possibility of identifying pre-symptomatic indicators of NDs. For

instance, research utilizing convolutional neural networks for eye tracking has achieved significant

diagnostic accuracies. ROC-AUC scores reached up to 0.88, indicating high model performance in

differentiating between PD patients and healthy controls. Similarly, advancements in facial expression

analysis through tools have demonstrated significant potential in detecting emotional changes in

ND patients, with some models reaching an accuracy of 0.89 and a precision of 0.85. This review

follows a structured approach to article selection, starting with a comprehensive database search

and culminating in a rigorous quality assessment and meaning for NDs of the different methods.

The process is visualized in 10 tables with 54 parameters describing different approaches and their

consequences for understanding various mechanisms in ND changes. However, these methods

also face challenges related to data accuracy and privacy concerns. To address these issues, this

review proposes strategies that emphasize the need for rigorous validation and rapid integration

into clinical practice. Such integration could transform ND diagnostics, making early detection tools

more cost-effective and globally accessible. In conclusion, this review underscores the urgent need to

incorporate validated digital health tools into mainstream medical practice. This integration could

indicate a new era in the early diagnosis of neurodegenerative diseases, potentially altering the

trajectory of these conditions for millions worldwide. Thus, by highlighting specific and statistically

significant findings, this review demonstrates the current progress in this field and the potential

impact of these advancements on the global management of NDs.

Keywords: neurodegenerative diseases; Alzheimer’s disease; Parkinson’s disease; digital endpoints;

online cognitive testing; eye-tracking; machine learning; early detection; digital phenotyping

1. Introduction

Aging is a significant risk factor for neurodegenerative diseases (NDs) such as Alzheimer’s
(AD) and Parkinson’s (PD), despite advancements in technology that have improved our
quality of life and longevity [1–3]. Unfortunately, the complexity of the disease process,
involving various contributing factors, presents a challenge in identifying effective reme-
dies [4].
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The complexity of NDs lies in a spectrum of disorders characterized by a primary loss
of cells, leading to secondary cell loss in other brain regions [5]. Processes correlated with
AD begin over 30 years, whereas cognitive changes begin over about 15–11 years, before
the first AD symptoms [6,7]. Unfortunately, the prevalence of Alzheimer’s Disease-related
dementia is fast increasing due to our aging population [8].

Sadly, the prevalence worldwide is estimated to be as high as 24 million; by 2050, the
AD number could rise to 139 million worldwide [9]. Currently (Q1′24), there is no cure for
AD, as during the first clinical symptoms and neurological diagnosis many parts of the
brain are already affected without the possibility to recover.

The second (after AD) most common neurodegenerative disease is Parkinson’s Disease
(PD). This disease is characterized mainly by motor but also by cognitive disorders [10].
The prevalence of Parkinson’s Disease is expected to increase significantly by 2050, with
estimates suggesting a doubling of the current number of affected individuals. This is due
to a combination of factors, including an aging population, declining smoking rates, and
increasing industrialization [11,12]. The economic burden of the disease is also projected
to rise, with the cost of medical expenses and indirect costs such as reduced employment
expected to increase substantially [11]. These projections highlight the urgent need for
innovative treatments and a coordinated global response to address the growing impact of
Parkinson’s Disease.

It is noteworthy that both Alzheimer’s Disease and Parkinson’s Disease are neurode-
generative diseases characterized by substantial and irreversible neuronal loss, however in
different regions of the brain. Commonly, neurodegeneration begins two to three decades
before observed symptoms. Hence, the best chance to fight NDs is to estimate the beginning
period of the ND-related brain changes [13].

Recent research on the beginnings of NDs has focused on the role of molecular biomark-
ers, such as miRNAs (small gene regulators) and exosomes (tiny cellular messengers). It has
shown promise in detecting neuronal dysfunction in the presymptomatic stage of NDs [14].
These biomarkers, along with other laboratory and biochemical markers, are being explored
for their potential in early diagnosis and disease progression assessment [15]. However,
the use of analog biomarkers in Alzheimer’s Disease diagnosis has limitations, including
the need for biological samples and hospitalization [16].

Despite these challenges, the development of bioassays (sensitive biological detection
tests) and the identification of biological markers in blood, plasma, and serum have shown
promise in overcoming these limitations [17]. However, the validation of the clinical useful-
ness of these biomarkers is still incomplete, and further research is needed to standardize
their readout and evaluate their performance in detecting early disease [18].

Therefore, the search for an ideal biomarker for Alzheimer’s and Parkinson’s Disease
continues, with the goal of achieving a reliable and accurate diagnosis at the earliest clinical
stages. Analog biomarkers, despite their strengths, hold limitations as well. Conversely,
digital technologies, which provide objective, high-frequency data, are being considered as
a solution to the current subjective measures of NDs [19].

These tools, including AI and remote sensing technologies, are promising avenues
for early detection and monitoring of neurodegenerative diseases that can be deployed
non-invasively and potentially at scale [20,21]. Yet, there is an ongoing discussion regarding
the connection between digital and analog biomarkers and their correlation. This is a gap
in the research that still calls for interdisciplinary validation, hence posing a challenge
between the medical, IT, legal, and ethical fields.

For that reason, this review aims to provide an interdisciplinary perspective and
highlight the challenges in the intersection between technology and medicine, based on
recent findings.

2. Biological Definition and Hidden Nature of NDs

Digital biomarkers emerged from analog biomarkers [22]. Hence, to properly interpret
the outcomes of digital tools, it is important to understand first the biological definitions
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of both diseases, their measurement parameters, their relevance to neurodegenerative
diseases, and how AI can enhance the interpretation and application of these biomarkers.

Therefore, we define NDs as a group of diseases that cause the progressive loss
of structure or function of neurons, including death of neurons. Despite the fact that
Alzheimer’s and Parkinson’s are in the same cluster of disorders, they exhibit distinct
biological characteristics [23].

For example, in Parkinson’s Disease, by the time symptoms like bradykinesia or tremor
became apparent, between 30 and 70% of the substantia nigra (SN—an area of the midbrain)
is already irreparably damaged, limiting the actionable time window. The range of 30–70%
is commonly cited, but this can vary based on individual cases and the methods used
for measurement. As a consequence of this damage, we lose SN neurons, the so-called
dopaminergic neurons of the midbrain, which are the main source of dopamine (DA) in
the central nervous system (CNS) [24].

Moreover, the impact of neurodegeneration can be noticeable in eye movements (EMs).
This is because the substantia nigra influences eye movements among its many roles in
movement regulation. The SN helps regulate the action of the superior colliculus (SC) by
providing inhibitory input. The SC initiates reflex orienting by sending control signals to
the gaze centers in the midbrain, and this process is impaired by the loss of neurons in
the SN.

In the context of Alzheimer’s Disease, the main affected part of the brain is a region
responsible for memory and spatial navigation. AD onset is primarily linked to changes in
the hippocampus, which rapidly loses tissue and functional connectivity with other brain
regions, leading to atrophy and cognitive impairment [25]. Changes in the hippocampus,
including altered neurogenesis, are early events in AD and may worsen memory impair-
ment [26]. Spatial disorientation, a common symptom of AD, is linked to changes in the
medial temporal and parietal brain regions [27]. These changes in the hippocampus and
associated brain regions are associated with altered gene expression, synaptic excitability,
and plasticity, which contribute to memory loss in AD [28].

However, thanks to internal compensation mechanisms, the neurodegeneration that
occurs in the meantime is hidden from the outside. This hidden progression of the disease
makes early detection a challenge in research, which can hinder the development of
prevention strategies [29,30].

3. Biological Definition Determines Parameters for Digital Measurements

There are three kinds of symptoms in NDs, related to different structures in the
brain being affected by the disease: cognitive (primarily in AD, secondarily in PD), motor
(primarily in PD, less evident in AD), and emotional (observed in both, but characteristic
for late-onset AD). Sadly, research has identified a range of non-motor symptoms (NMSs)
as well, including cognitive problems, apathy, depression, anxiety, hallucinations, and
psychosis, as well as sleep disorders, fatigue, autonomic dysfunction, sensory problems,
and pain [31]. Importantly, symptoms can occur in the pre-motor phase of the disease and
are not fully addressed by current treatments [32].

To better sense the hidden and ongoing changes in the brain, the intersection of tech-
nology and medicine stands out as a perspective direction, especially with the opportunity
for wide application that can help in prevention strategies. The importance of those detec-
tors, sensitive enough to catch invisible signs of the disease, is repeatedly underlined in the
literature [20,33].

Fortunately, as we present, researchers analyzing NDs have become interested in
changes in emotional, cognitive, and EM patterns, deeply examining their parameters for
building AI models for disease classification.

Given the narrative nature of our review, our aim is to provide a broad overview
rather than a detailed technical analysis. However, recognizing the importance of precision
in terminology, we have reviewed the manuscript to ensure that each mention of AI and
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ML is contextually accurate, clarifying the distinction between the broader field of AI and
the specific application of ML as a subset of AI techniques.

4. Methods

This narrative review synthesizes existing research on the integration of machine learn-
ing and digital biomarkers in the diagnosis and monitoring of neurodegenerative diseases.
We explore the advancements, challenges, and future directions in this interdisciplinary
field, emphasizing the potential of these technologies to support early detection and patient
care. The scope encompasses studies related to eye tracking, facial expression analysis,
cognitive testing, and other digital phenotyping tools in the context of diseases such as
Alzheimer’s and Parkinson’s.

To capture a comprehensive body of literature, we conducted searches in major sci-
entific databases, including Google Scholar, IEEE Xplore, and PubMed. Our search was
supplemented by the use of research tools like Litmaps and Mendeley, which helped in
mapping the literature connections and identifying key contributions.

We utilized a combination of keywords and phrases such as “eye tracking”, “facial
expressions”, “cognitive testing”, “machine learning,” “digital biomarkers,” “digital pheno-
typing,” “neurodegenerative diseases,” “Alzheimer’s Disease,” and “Parkinson’s Disease.”
Boolean operators (AND, OR) were used to refine the search, ensuring a focused retrieval
of relevant studies.

Our selection process included a diverse range of studies that provide insight into the
development and application of digital biomarkers and machine learning in the context of
neurodegenerative diseases. We cite articles published between 1937 and 2023, written in
English, and focusing on original research. The selection was guided by the relevance of
each article to the review’s themes, the innovative use of technology in neurodegenerative
disease diagnostics, and the potential impact on clinical practices and patient outcomes.

The literature was synthesized to highlight key findings, identify thematic trends, and
discuss the implications of integrating digital biomarkers with machine learning for neu-
rodegenerative disease diagnostics. We analyzed the selected studies in the context of their
contribution to advancing technology, addressing challenges such as data accuracy, privacy
concerns, and the need for validation, as well as their potential for clinical application. This
thematic analysis allowed us to draw insights into the current state of the field, identify
gaps in the literature, and propose directions for future research.

The review integrates findings from the selected literature into a cohesive narrative
assessment, discussing the evolution of digital biomarkers and machine learning in the
medical field, with a particular focus on neurodegenerative diseases. By examining the
studies through a thematic lens, it provides a comprehensive overview of the landscape,
including the technological advancements, methodological challenges, and the ethical
considerations of implementing these technologies in clinical settings.

5. Remote Oculomotor and Facial Expression Analysis Indicate Progression of NDs

Eye tracking, an established technique for measuring eye movements, plays a crucial
role in understanding neurodegenerative diseases. This technique is employed to record
the paths of eye movements, often under controlled conditions such as the “follow the green
dot on the screen” task. Camera-based eye trackers are the most common form, but other
methods like electrooculography (EOG) are available as well [34]. Eye movement disorders
offer a window into early changes in brain computation, especially as they are affected
early in neurodegenerative diseases [35]. By studying these movements, researchers can
gain insights into how these diseases impact the brain’s functionality.

Additionally, when combined with facial expression analysis, eye tracking becomes
even more powerful [36]. These methodologies are being studied in various contexts of
neurodegenerative diseases to identify early signs and progression markers. The combi-
nation of eye tracking and facial expression analysis offers a comprehensive approach to
studying NDs, providing a more nuanced understanding of the diseases.
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6. Eye Tracking Helps to Determine the Disease Probability

Eye tracking technology has been utilized to differentiate between Parkinson’s Disease
patients and healthy controls, with promising results. For example, in a recent (2023)
study, Brien et al. collected video-based eye tracking data on an interleaved pro/anti-
saccade task of 104 PD patients and 106 healthy controls [37]. They used features of
saccades, pupil, and blink behavior to predict confidence scores for PD/PD-MCI/PDD
diagnosis with the Linear Mixed Model to determine the disease probability by different eye
tracking biomarkers. This classifier reached a sensitivity of 0.83 and a specificity of 0.78 and
the Receiver Operator Characteristic Area Under the Curve (ROC-AUC) of the classifier
was 0.88. The predicted confidence scores were indicative of PD motor and cognitive
performance scores. The study’s findings demonstrate that eye tracking biomarkers can
reliably indicate PD motor and cognitive performance scores, offering a non-invasive
method for early disease detection.

Similarly, other studies have explored eye tracking for disease detection. Bejani et al.
(2022) also utilized video-based eye tracking to analyze smooth pursuit eye movements
in PD patients and controls [38]. A collection of parameters was obtained, including
complexity measures based on entropy/regularity, describing the system’s dynamic and
features for assessing self-similarity. The Support Vector Machine (SVM) was used for
classification and for the PD and control groups an accuracy of 0.74 was obtained (sensitivity
0.73, specificity 0.74). This research further supports the idea that eye tracking can provide
valuable data in distinguishing PD patients from healthy individuals, emphasizing the role
of dynamic system features in diagnosis.

Continuing this trend, additional studies have used similar methodologies with high
accuracy. Prashanth et al. (2016) used SVM on a dataset from the Parkinson Progression
Markers Initiative. This method applies data mining techniques to attributes considered to
be early symptoms of PD, such as cognitive disorders, rapid eye movements, sleep behavior
disorders, and cerebrospinal fluid measurements [39]. Researchers achieved 0.96 accuracy,
0.97 sensitivity, and 0.95 specificity in distinguishing early PD patients from a control group.
This high level of accuracy underlines the effectiveness of data mining techniques in early
PD detection, providing a strong case for the use of eye tracking in clinical assessments.

Beyond PD, eye tracking has shown promise in other neurodegenerative conditions
as well. In another research study by Vodrahalli et al. (2022), infrared oculography was
used with visuo-motor tasks involving rapid reading of 40 single-digit numbers [40]. They
used convolutional neural networks (CNNs) as a classifier with widow-based analysis of
recording which includes fixations and saccades. The results were discriminated among
diseases impacting EM (like PD), diseases associated with vision loss, and healthy controls
(81% accuracy compared with the baseline of 33%). This approach showcases further the
versatility of eye-tracking technology in diagnosing a range of conditions, highlighting its
diagnostic potential.

Similarly, recent research has focused on combining eye tracking with other diagnostic
methods. Belan et al. (2023) investigated the effectiveness of an eye-tracking-assisted visual
inference language task in differentiating individuals with mild cognitive impairment
(MCI) or Alzheimer’s Disease dementia from cognitively unimpaired older adults [41].
The research involved 95 participants, including 49 with MCI, 18 with mild AD dementia,
and 28 controls. The authors used a non-parametric repeated measures ANOVA model for
verbal answers and a linear mixed model (LMM) or its generalized version for the analysis
of eye tracking variables. The results showed significant differences in verbal answers
across all diagnostic groups, and eye-tracking parameters successfully discriminated AD
from MCI and controls. Analyzing oculomotor behavior alongside language assessments
demonstrated increased sensitivity for detecting subtle deficits in the MCI-AD continuum,
making it a valuable diagnostic tool. These findings collectively indicate the growing
importance of eye tracking in diagnosing NDs, offering a more nuanced and sensitive
approach to identifying early stages of diseases like PD and AD (Table 1).
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Table 1. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Video-based eye
tracking

Saccades, pupil,
blink behavior

PD detection
Sensitivity: 0.83,
Specificity: 0.78,
ROC-AUC: 0.88

[37]

Video-based eye
tracking

Smooth pursuit eye
movements,

entropy/regularity,
self-similarity

PD detection
Accuracy: 0.74,
Sensitivity: 0.73,
Specificity: 0.74

[38]

Video-based eye
tracking

Cognitive disorders,
rapid eye

movements, sleep
behavior disorders,
cerebrospinal fluid

measurements

Early PD
detection

Accuracy: 0.96,
Sensitivity: 0.97,
Specificity: 0.95

[39]

Infrared
oculography

Fixations, saccades
Distinguishing
neurodegenera-

tive diseases

Accuracy: 81%
(compared to 33%

baseline)
[40]

Eye tracking
with visual
inference

language task

Oculomotor
behavior, verbal
answer analysis

Differentiating
MCI/AD

dementia from
controls

Significant
discrimination

between AD, MCI,
and controls

[41]

However, eye-tracking has traditionally been considered an expensive research method
due to the high cost of commercial eye tracking systems [42]. Fortunately, as presented in
the next section, recent advancements have made it possible to develop low-cost remote
eye tracking systems that maintain clinically significant parameters.

7. Convoluted Neural Networks Allow Cost Optimization of Eye Tracking

The development of a model for classification using disease biomarkers, such as
those obtained from eye tracking, is a crucial step in neurodegenerative disease research.
Embedding these models into practical environments, particularly through web-based
eye-tracking measurements, facilitates their use in healthcare settings.

Interestingly, while web-based eye-tracking has shown effectiveness, it typically ex-
hibits marginally reduced accuracy and increased data variance compared to laboratory-
based devices. This limitation highlights the necessity for model enhancement and method-
ological refinement to ensure practical applicability and accuracy in real-world settings.
Addressing this need, recent research has turned to convolutional neural networks (CNNs)
for enhancing eye-tracking methods. Thus, the integration of CNNs in eye tracking technol-
ogy represents a significant advancement, aiming to improve the precision and reliability
of these diagnostic tools, thus making them more suitable for clinical applications in
neurodegenerative disease diagnostics.

For example, CNNs have been used to enhance the accuracy of gaze estimation on
mobile devices by focusing on facial features. Akinyelu et al. (2022) utilized the face
component, gaze features were extracted from the eyes, and the shape and location of the
eyes were encoded into the network through a 39-point facial landmark component and a
Visual Geometry Group (VGG) convolutional neural network [43]. Different experiments
were performed, and the experimental result revealed that 39-point facial landmarks can be
used to improve the performance of CNN-based gaze estimation models. The researchers
achieved the highest eye tracking accuracy of 0.96 and Mean Square Error (MSE) of 0.01.
This approach demonstrates the potential of using facial landmarks to refine CNN-based
gaze estimation models, significantly improving performance.

Similarly, another study explored the use of CNNs with webcams for eye tracking.
Meng et al. (2017) presented a paper where CNNs were employed in conjunction with
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webcams for an eye-tracking approach that relies on the detection of key eye features,
including the inner and outer corners, the center of the upper and lower eyelids, and
the center of the iris [44]. These feature points were then used to construct six types of
original time-varying eye movement signals, reducing reliance on the iris center, especially
in low-quality videos. The final step involved training a Behaviors-CNN using these
signals to recognize diverse eye movement patterns. This strategy helped to mitigate
errors stemming from basic eye movement-type detection and artificial eye movement
feature construction. The researchers conducted experiments with their application across
various activities and, to assess performance, a visual activity dataset was created using a
webcam, comprising nearly 0.5 million frames gathered from 38 subjects. They achieved
the highest results in the “reading” category, with a precision of 0.87 and a recall of 0.89.
By training a Behaviors-CNN with these signals, the study mitigated errors from basic eye
movement-type detection and feature construction, showcasing the adaptability of CNNs
in different settings.

Continuing the trend of CNN integration, Gunawardena et al. (2022) have also
compared various CNN models for mobile eye tracking. They compared four modern
lightweight CNN models (LeNet-5, AlexNet, MobileNet, and ShuffleNet) in search of opti-
mal performance in real-time eye tracking based on video oculometry [45]. The researchers
used four lightweight CNN models (LeNet-5, AlexNet, MobileNet, and ShuffleNet) to
assess the performance of gaze estimation on mobile devices using the Gaze Capture
dataset. To analyze the feasibility of various inference modes—on-device, edge-based, and
cloud-based—they conducted an empirical measurement study, quantifying inference time,
communication time, and resource consumption. The MobileNet-V3 in this study outper-
formed in terms of model accuracy with the lowest training MSE after 60 epochs, which
was 0.5 ± 0.01, and also providing the lowest response inference time, 17.4 milliseconds,
of all evaluated network architectures. The findings also revealed that while cloud-based
inference yields faster predictions, the communication time introduces significant latency,
eliminating real-time eye tracking based on cloud hosting. On the other hand, the re-
searchers point out that on-device inference is limited by energy and memory consumption,
leaving edge-based solutions as the best solution with reasonable response time, memory
usage, and energy consumption for eye-tracking applications on mobile devices.

Finally, Rakhmatulin and Duchowski (2020) provide an in-depth analysis of contem-
porary techniques for webcam-based gaze tracking, offering practical implementations
of popular methods [46]. The focus is on exploring various deep neural network models
for online gaze monitoring. A novel eye-tracking approach is introduced, enhancing the
effectiveness of deep learning methods. The system employs a dual-coordinate system, de-
termining the position of the face relative to the computer through infrared LED detection
and the gaze position is obtained through a CNN and a method involving three objects (left,
right, and center) for accurate gaze tracking. The implementation demonstrates practical
applications by enabling computer interaction control based on gaze.

These findings highlight the effectiveness of edge solutions by balancing response
time, memory utilization, and power consumption in eye tracking applications on mobile
devices, representing a significant step in optimizing eye tracking technologies using
CNNs (Table 2). Hence, we note that the development of digital diagnostic applications in
real-time environments is crucial, especially in telemedicine.

Importantly, the nuances introduced by different digital environments can signifi-
cantly impact diagnostic reliability. Moreover, the approach of not storing registration
data enhances privacy and reduces data management requirements, aligning with the
expectations of medical experts and patients for efficient and secure medical services.

Therefore, it is vital to consider these digital environments when developing and
implementing digital diagnostic tools. The immediate results are not only a convenience but
a necessity in telemedicine, underlining the importance of real-time processing capabilities.
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Table 2. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Facial features
and gaze

estimation

Facial landmarks,
gaze features

Eye tracking
accuracy

enhancement

Highest accuracy:
0.96, MSE: 0.01

[43]

Webcam-based
eye tracking

Key eye features
(corners, eyelids, iris

center), eye
movement signals

Eye movement
pattern

recognition

Precision: 0.87,
Recall: 0.89

[44]

Mobile eye
tracking

Lightweight CNN
models (LeNet-5,

AlexNet, MobileNet,
ShuffleNet)

Gaze estimation
on mobile

devices

Best model accuracy
(MobileNet-V3):
Training MSE:

0.5 ± 0.01, Response
time: 17.4 ms

[45]

Webcam-based
gaze tracking

Dual-coordinate
system, deep neural

network models

Online gaze
monitoring

Enhanced accuracy
and practicality for

computer
interaction control

[46]

8. Digital Environments Impact Diagnostics Speed and Reliability

Immediate results from automated diagnostic processes are expected by both medical
experts and patients. This aspect is obviously important in telemedicine. When using
automated diagnostic processes, both medical experts and patients expect immediate
results. Additionally, thanks to this approach, there can be no need to store the data of
the registration itself. Moreover, there is growing interest in non-invasive predictors of
Alzheimer’s and Parkinson’s Disease, as seen in the use of webcam-based eye-tracking
data for classification.

Therefore, experiments with web-based applications were conducted to demonstrate
the feasibility of client-side solutions. For example, Yang et al. in 2021 developed the
“WebGazer”, a web-based eye-tracking application that was integrated into a widely used
JavaScript library (jsPsych) for behavioral research [47]. The procedure and code were mod-
ified to minimize calibration/validation efforts and enhance temporal resolution. Testing
this approach with a decision-making study on Amazon MTurk, the researchers success-
fully replicated in-lab findings on the connection between gaze and choice. Notably, there
was minimal degradation in spatial or temporal resolution, demonstrating the feasibility of
online web-based eye-tracking in behavioral research.

Śledzianowski et al. (2023) experimented with disconnecting the software from the
hardware capabilities to compensate for the lack of professional equipment in the patient’s
household [48,49]. The methodology was executed in an online system utilizing readily
available home-grade equipment, yielding results comparable to those obtained with an
infrared 60 Hz eye-tracker but with fewer artifacts. The findings indicated that the disparity
in EM latency, a crucial parameter for distinguishing patients with Parkinson’s Disease,
was 16 ms when compared to a laboratory-grade 1000 Hz eye-tracker. It is expected that
this approach will play a role in advancing analytic tools for NDs (especially for PD)
within computational health, consequently expediting the development of new preventive
measures for such conditions.

A similar off-eye-tracker approach is presented by Harisinghani et al. (2023) [50]. The
study addresses the growing interest in non-invasive predictors of Alzheimer’s Disease
by exploring the use of webcam-based eye-tracking data for classification. Their previous
successful attempts utilized high-end eye trackers during picture narration and reading
tasks. In contrast, this study employs a deep-learning approach to build classifiers using
eye-tracking data collected with a webcam. While the webcam gaze classifier does not
match the performance of the high-end eye-tracking classifier, it outperforms the majority-
class baseline classifier in terms of the AU-ROC. The findings suggest that predictive signals
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can be extracted from webcam gaze tracking, offering a promising proof of concept for the
potential use of this technology as an affordable alternative to high-end eye trackers in AD
detection, despite the need for further exploration.

Moreover, eye tracking in Virtual Reality (VR) technology is being actively explored
for remote diagnosis of neurodegenerative diseases [51]. For example, Orlosky et al.
(2017) deliberate the need to conduct research in a laboratory environment [52]. This
research addresses the challenges in early and accurate diagnosis of neurodegenerative
conditions, particularly Parkinson’s Disease, stating that current evaluation methods are
time consuming, require travel to specialized centers, and may lead to misdiagnosis. The
authors present a cost-effective Virtual Reality interface designed for the evaluation and
diagnosis of neurodegenerative diseases. Utilizing a VR display with an integrated infrared
camera, they created a 3D virtual environment mimicking tasks used in patient evaluations.
The virtual tasks were designed to elicit eye movements associated with neurodegenerative
diseases. The study involved nine Parkinson’s Disease patients and seven healthy controls,
testing the system’s ability to emulate clinical tasks. Eye tracking algorithms and image
enhancement were applied to the recorded eye movements, and evaluation by physicians
confirmed three out of four abnormalities. The VR interface demonstrated potential for
clinical diagnosis, with physicians rating visualizations as potentially useful.

Beyond VR, there is also a focus on using pupil and oculomotor measures as biomark-
ers in neurodegeneration. O’Callaghan et al. (2022) focus on using pupil and oculomotor
measures as biomarkers to detect changes in the locus coeruleus (LC) [53]. The LC role is
synthesizing norepinephrine (noradrenaline) and it is involved in physiological responses
to stress and panic. It is also involved in various neural processes including attention,
memory, and cognitive functions. The LC’s degeneration or dysfunction is associated
with several neurodegenerative diseases, including Alzheimer’s and Parkinson’s. Hence,
the study involved Parkinson’s Disease patients who underwent a pharmacological chal-
lenge with the noradrenergic reuptake inhibitor atomoxetine. Ultra-high field 7T MRI
characterized the locus coeruleus, and patients were tested on and off atomoxetine using
oculomotor eye-tracking tasks and a learning task with pupillometry. The results indicate
that atomoxetine improves cognitive performance and saccadic reaction times, with larger
pupil responses correlated with locus coeruleus integrity.

Hence, the findings suggest that pupil and eye tracking measures serve as effective
biomarkers for this system and are sensitive to pharmacological interventions, offering
potential implications for the early detection and monitoring of subcortical changes in
Alzheimer’s Disease (Table 3).

Table 3. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Web-based eye
tracking

(WebGazer)

Spatial/temporal
resolution

Behavioral
research

Minimal degradation
in resolution,

replication of in-lab
findings

[47]

Online system
with

home-grade
equipment

EM latency
Parkinson’s

Disease
diagnostics

Comparable results to
infrared eye-tracker
with less artifacts,

latency disparity: 16
ms

[48,49]

Webcam-based
eye tracking

AU-ROC
Alzheimer’s

Disease
classification

Outperforms
majority-class baseline

classifier, indicates
potential for AD

detection

[50]
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Table 3. Cont.

Sensor Metrics Sense—Domain Results Reference

VR with
integrated eye

tracking

Eye movement
analysis

Evaluation of
neurodegenera-

tive diseases

Emulates clinical
tasks, confirmed

abnormalities,
potential for clinical

diagnosis

[52]

Pupillometry
and oculomotor

tasks

Locus coeruleus
integrity,
cognitive

performance

Biomarkers for
neurodegenera-

tion

Improved cognitive
performance and
saccadic reaction

times with
atomoxetine

[53]

Eye movement measurement offers valuable insights. But it is not the only key to
understanding neurodegenerative diseases. Here we can expand our perspective to include
facial expressions. This aspect, often affected in NDs, plays a key role in interpreting
patients’ emotional states, correlates strongly with eye movements, and allows tracking the
disease progression.

9. Emotional States Estimations by Facial Expressions Can Indicate Hypomimia

An interesting extension of the EM approach is the analysis of the patient’s emotions.
The analysis of emotional states in PD with ML methods is not yet common. However, the
current findings emphasize a gap in real-world implementations. Emotions can change
during neurodegeneration, creating a clear trace of the disease visible, for example in
different facial expressions. Here, scientists often mix bio-signals coming from different
sources, for example, they study the relationships between the properties of eye movements
in various emotional states expressed by facial expressions.

Various studies have explored this multifaceted approach, offering insights into the
diagnostic potential of these methods. Importantly, mature open-source projects like
OpenFace provide state-of-the-art results for selected facial action unit (AU) recognition [54].
OpenFace utilizes the Facial Action Coding System (FACS), which objectively measures
and categorizes facial expressions by breaking them down into distinct movements known
as Action Units [55]. It provides two machine learning models: one for determining the
presence of an AU and another for describing its intensity on a 5-point scale. This system
allows for a detailed analysis of facial expressions, such as identifying the combination
of AUs that comprise the expression of “happiness” or “sadness”, providing meaningful
support for research. The contribution of open-source projects like OpenFace is invaluable
in research on neurodegenerative diseases.

Using this tool, Śledzianowski et al. (2021) studied facial emotions (FEs) through the
muscle activity model (FACS) and chaos parameters in EMs [56]. The research revealed that
parameters associated with chaos exhibited a strong positive correlation with happiness,
while linear and noise components were mostly negatively correlated with this emotion.
The model proposed simultaneous emotion recognition based on facial landmarks and
EMs, providing a significant modification in emotion estimation models. Many nonlinear
models have been tested, with the best results achieved by using the K-Nearest Neighbors
algorithm with an accuracy of 0.89 with an ROC-AUC score of 0.88, F1 score of 0.89,
Precision of 0.85, Sensitivity/Recall of 0.93, and Specificity of 0.82. This study highlights the
nuanced relationship between facial expressions and EMs in emotional states, providing a
significant modification in emotion estimation models.

Interestingly, further validation was conducted using the Affectiva-MIT Facial Expres-
sion Dataset (AM-FED) which included both human and algorithmic classifications [57]. It
confirmed that EM chaos emerged as a biomarker of happiness, and it can play a more cru-
cial role than the intensity of specific muscle activity (AU12). It means that true happiness
can be detected even in situations when the lower part of a face is covered, which often
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happened, e.g., during the COVID pandemic. The model is suggested as an extension for
estimating happiness based on facial muscle activity, with potential applications in medical
analysis of diseases like PD where facial expressions may be affected by hypomimia. This
approach demonstrates the potential of using facial tracking for diagnostic purposes in
neurodegenerative diseases.

Others also examined the relationship between facial expressions and PD symptoms.
Pegolo et al. (2022), addressing hypomimia in PD, aimed to create a quantitative index,
termed the Face Mobility Index (FMI), utilizing a face tracking algorithm based on the Facial
Action Coding System [58]. The researchers used OpenFace to detect facial landmarks’
positions and extract features. The software considers distances between pairs of facial
features to distinguish between healthy individuals and those with PD. The index was also
evaluated for emotion classification. The results indicated that FMI effectively quantifies
impairment in PD, showing statistically significant differences for all emotions when
distances between features are considered and for happiness and anger when FMI is
applied. kNN was found to be the optimal technique in the classification with FMI and the
results based on the AUC yielded values ranging between 88.9 and 88.4 and F1 scores were
between 70.1 and 73. This research contributes to understanding the quantitative aspects of
facial impairment in PD, offering new avenues for clinical evaluation.

Moreover, Almutiry et al. (2016) suggest the potential for the automated measurement
of day-to-day variations in PD symptoms based on FEs. The research introduces a method
to assess facial expressivity for enhancing PD clinical evaluations [59]. Given controversial
evidence about PD-related facial impairment, the research aims to explore discriminative
and quantitative measures of PD through facial expression analysis. Video clips of eight
subjects (four healthy controls, and four PD patients) were recorded over several weeks,
focusing on emotion variation. A statistical shape model tracked facial expressions, mea-
suring the amount of expressivity for each subject. The results indicated that movement
measures during happiness, disgust, and anger expressions were the most discriminative,
with PD patients exhibiting less movement than controls, indeed confirming hypomimia in
PD patients.

The impact of hypomimia on social interaction and quality of life has also been
addressed in clinical studies. A comprehensive review examined the role of computational
analysis techniques in measuring emotional facial expressions in PD patients [60]. Clinical
studies often use the Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS), with item 3.2 assessing facial expression. Traditional observer-based scales
can be time consuming, prompting the exploration of computational analysis techniques
for facial expressions. The paper provides a comprehensive review of these techniques
for measuring emotional facial expression in people with PD, emphasizing their clinical
applications. Additionally, a pilot experimental work on masked face detection in PD is
presented, utilizing a deep learning-based model trained on an NVIDIA GeForce 920M
GPU, achieving 85% accuracy on testing images. These findings further emphasize the
importance of innovative approaches in detecting and understanding the nuances of facial
expressions in PD.

In another study, the authors identified a correlation between impaired facial emotion
recognition, detectable through online tools, and neuroanatomical changes that neces-
sitate laboratory examinations [61]. The study is focusing on structural changes in the
orbitofrontal cortex (OFC) and the amygdala. Using the Iowa Gambling Task (IGT) and
Ekman 60 faces test, 24 early PD patients and 24 controls were assessed. Voxel-based mor-
phometry (VBM) analysis of high-resolution structural magnetic resonance images revealed
significant gray matter loss in the right amygdala and bilaterally in the OFC in PD patients.
Volumetric analyses did not yield significant differences. Correlations between OFC gray
matter volume and test performance suggest that OFC and amygdala degeneration are
associated with neuropsychological deficits in early-stage PD. This correlation highlights
the importance of structural brain changes in understanding the neuropsychological deficits
in early-stage PD.
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Notably, the recognition of emotions in speech and graphic representation has also
been explored. Lu et al. (2022) investigated the recognition of emotions in speech and
the graphic representation of expressions gathered during the learning process [62]. They
employed an unsupervised Adversarial Autoencoder for feature extraction and utilized
convolution neural networks with Bi-directional Long Short-Term Memory (CNN-BiLSTM),
achieving an accuracy of 0.99 in emotion classifications. This approach underlines the
potential of advanced machine learning techniques in classifying emotions, offering insights
into neurodegenerative disease progression.

Moreover, research on EEG features in cross-subject emotion recognition highlights
the significance of various EEG parameters in understanding emotions. Li et al. (2018)
examined the significance of 18 types of linear and non-linear EEG features in cross-
subject emotion recognition, encompassing various channels, brain regions, rhythms,
and feature types [63]. Employing SVM with automatic feature selection methods, they
verified the potential of exploring robust EEG features in cross-subject emotion. For the
dataset containing physiological signals, they attained a mean recognition accuracy of 0.83
(AUC = 0.9). This research demonstrates the potential of EEG features in providing robust
biomarkers for emotional states in neurodegenerative diseases.

An interesting direction of research is also the analysis of emotions based on text
(sentiment), which in the case of neurodegenerative diseases rather concerns the early phase
of the disease or tests before the medical diagnosis of the disease. Such an example is the
study presented in “Deep learning approach to text analysis for human emotion detection
from big data”, where the authors introduced a Deep Learning-Assisted Semantic Text
Analysis (DLSTA) for identifying human emotions in text documents using big data [64].
This method involved an RNN/CNN on text content to generate word embeddings, extract
feature vectors, and perform final classification with SVM. For different emotions, they
achieved a mean accuracy for prediction of 0.83 and detection between 0.92, with a mean
recall of 0.85 and an F-Measure of 0.92. This method’s success in detecting emotions from
text highlights the potential for early diagnosis and monitoring of neurodegenerative
diseases through linguistic analysis.

The research leveraging machine learning and facial expression analysis, including
tools like OpenFace and datasets such as AM-FED, demonstrates significant potential in
diagnosing and monitoring neurodegenerative diseases by identifying emotional states
and facial mobility impairments (Table 4). This leads us to another important area: digital
tools that help to spot signs of early changes in the brain.

Table 4. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

OpenFace
Facial Action Coding

System (FACS)
Facial expressions

analysis

State-of-the-art results for facial
action unit recognition. Provides
machine learning models for AU

presence and intensity.

[54,55]

Facial Landmarks
and EM

Chaos parameters,
k-Nearest Neighbors

(KNN) algorithm

Emotion estimation
models

Strong correlation of chaos
parameters with happiness.

High accuracy (0.89) and
ROC-AUC score (0.88) for

emotion recognition.

[56]

AM-FED Dataset
Machine learning,

chaos as a biomarker
Happiness estimation

Confirmed EM chaos as a
biomarker for happiness, crucial

even when the lower face
is covered.

[57]
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Table 4. Cont.

Sensor Metrics Sense—Domain Results Reference

Face Mobility Index
(FMI)

Face tracking, kNN
Facial impairment

in PD

Statistically significant
differences in facial impairment
between healthy individuals and

PD patients. AUC values
between 88.9 and 88.4, F1 scores

between 70.1 and 73.

[58]

Video Clips Statistical shape model
Day-to-day variations

in PD symptoms

Highlighted hypomimia in PD
patients through decreased
movement in expressions of

happiness, disgust, and anger.

[59]

Computational
Analysis

Movement Disorder
Society’s Unified

Parkinson’s Disease
Rating Scale

(MDS-UPDRS)

Emotional facial
expressions in PD

Reviewed computational
techniques for measuring

emotional facial expressions,
with a deep learning model
achieving 85% accuracy in

masked face detection.

[60]

Iowa Gambling Task
and Ekman 60

Faces Test

Voxel-based
morphometry (VBM)

Neuropsychological
deficits in PD

Correlation of OFC and
amygdala degeneration with
neuropsychological deficits in

PD patients.

[61]

Adversarial
Autoencoder and

CNN-BiLSTM

Emotion recognition in
speech and graphic

representations
Emotion recognition

Achieved an accuracy of 0.99 in
emotion classifications,

demonstrating the effectiveness
of advanced machine learning

techniques.

[62]

EEG Features
SVM with automatic

feature selection
Cross-subject

emotion recognition

Mean recognition accuracy of
0.83 (AUC = 0.9), highlighting

the potential of EEG features in
emotional state biomarkers.

[63]

Text Analysis (DLSTA)
Deep

Learning-Assisted
Semantic Text Analysis

Emotion detection
from text

Mean accuracy for emotion
prediction of 0.83, with detection

accuracy up to 0.92 and mean
recall of 0.85.

[64]

10. Digital Tools Allow Cognitive Decline Detection

New evidence shows that AI and digital tools are good ways to find signs of brain
diseases early. They might help slow down the diseases [65,66]. These tools can spot
diseases that cause dementia long before people start showing clear signs of memory or
thinking problems. They can help guide changes in how people live and decide who should
join medical studies [65,67]. Furthermore, these tools might even help find these diseases
before any symptoms show up, and this could lead to new ways to treat the diseases [68].

In mild cognitive impairment, AI and virtual reality can be used to create predictive
models based on digital biomarkers, enabling early detection and interventions [69,70].
Moreover, AI shows the potential to assist with the detection of early-stage dementia,
offering cost-effective and objective methods [71]. Furthermore, an increasing array of
Medtech tools are being developed to monitor daily routines and behaviors, capturing
early cognitive changes indicative of NDs [72].

However, it became evident that the field introduced multiple viewpoints of digital
biomarkers that might appear unrelated to or inconsistent with each other, obscuring the
clear picture of research perspectives. This critique follows Motahari-Nezhad (2022), who
emphasizes the need for high-quality studies and the consideration of methodological
criteria and evidence quality [73].
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As well, Sobolev (2021) highlights the potential of digital biomarkers in predicting and
influencing health conditions but also underscores the need for technological integration
and the challenges in this area [74]. Similarly, Babrak (2019) discusses the basic differences
and similarities between traditional and digital biomarkers and points out the necessity
for synchronization and unique feature definition claiming, therefore, that the unclear
definition of digital biomarkers, population groups, and their intersection with traditional
biomarkers hinders their discovery and validation [22]. Finally, and recently, Alonso et al.
(2023) even concluded that there is no consensus about what this emerging term means [75].

Additionally, it’s interesting to note that the approach to diagnosing Alzheimer’s
Disease has evolved over the years. Previously, AD was diagnosed when the patient
exhibited both cognitive changes and symptoms related to dementia. However, the US
National Institute on Aging and the Alzheimer’s Association (NIA-AA) now defines AD
as a diagnosis based solely on biological biomarkers, even if clinical symptoms are not
present yet. This means that AD can be diagnosed much earlier than before. The FDA
has developed a staging system for AD, which ranges from stage 1 (normal cognition and
biomarker evidence of AD) to stages 4–6 (mild, moderate, and severe dementia).

Importantly, these findings collectively underscore the necessity for a coherent def-
inition of those approaches, at least, to reveal the potential of digital biomarkers and AI
methods in Medtech applications.

Hence, to characterize the tandem of digital biomarkers and AI tools, the literature
suggests using the term “digital phenotyping”, where the assumption is that an individual’s
health experience is reflected in the digital traces that they leave behind [76]. These traces are
further translated as data collected from everyday interactions with technology like smart-
phones and wearable devices. This approach is notably transforming the way we understand
and detect NDs, leveraging everyday technology to gather valuable health data [77].

However, the effectiveness of these digital tools as reliable screening mechanisms
remains underdeveloped despite their potential and advancements in the AI field. Those
challenges were presented in several studies and projects that explored the use of digital
technology in detecting and monitoring neurodegenerative diseases, though with varying
degrees of success [78]. Here, we must emphasize the importance of good user experience
(UX) in cognitive screening tools, not only for engagement but also for the accuracy and
reliability of the collected data.

11. User Experience Impacts Data Reliability

The necessity of a good user experience in cognitive screening tools is crucial, not only
for user engagement but also for the accuracy and reliability of the data collected. One
notable project in this domain is the Altoida initiative, which focuses on identifying digital
biomarkers for mild cognitive impairment [79].

The Altoida model, based on app data, demonstrated high accuracy (AUC = 0.92) in
predicting the transition from MCI to dementia [80]. This accuracy was further validated
in subjects with MCI due to AD, corroborated by positive beta-amyloid and imaging
biomarkers [81]. This high level of accuracy is significant as it showcases the potential of
mobile-based applications in the pre-symptomatic detection of NDs. Altoida’s recognition
by regulatory bodies like the FDA and CE further highlights its clinical relevance [82].

Similarly, another study focused on the Smart Aging Serious Game (SASG) demon-
strated the effectiveness of digital platforms in cognitive health assessment [83,84]. The
project included a virtual reality platform designed for the ecological assessment of mild
neurocognitive disorders. With a focus on mild cognitive impairment and vascular cogni-
tive impairment (VCI), conditions associated with a heightened risk of developing dementia,
the research aimed to validate SASG’s diagnostic capabilities [84].

Importantly, the SASG was successful in identifying the distinct cognitive profiles
associated with MCI and VCI, aligning with traditional neuropsychological assessments.
An ROC analysis indicated that SASG and MoCA both demonstrated high diagnostic
sensitivity and specificity (AUC values greater than 0.80) for identifying VCI versus HC
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and MCI versus HC. The classification accuracy for distinguishing these groups was high,
with RF and LR analyses showing between 75% and 91% accuracy [84]. Hence, the SASG
proved to be an effective digital phenotyping tool that aligns with traditional neuropsy-
chological evaluations, capable of early and potentially self-administered assessment of
cognitive impairments.

What is noteworthy in that context is a study by Illiadou et al. (2021) which was
conducted with the administration of a self-administered test in a VR (the “Virtual Su-
permarket Test (VST)”) environment combined with a cheap and commercially available
wearable EEG. It is possible to register elevated EEG rhythms in the MCI group when
solving tasks in virtual reality, which therefore may be associated with an overall cognitive
decline [85].

Interestingly, the SASG example further supports the necessity of a good user experi-
ence in cognitive screening tools. Here, usability is crucial, not only for user engagement
but also for the accuracy and reliability of the data collected. A recent study (2022) by
Zygouris et al. evaluated the usability of the Virtual Supermarket Test [86]. Twenty-four
older adults with subjective cognitive decline and thirty-three patients with MCI completed
the VST and subsequently assessed its usability using the System Usability Scale (SUS). The
results were notable, with an average SUS score of 83.11 out of 100 points (SD = 14.6), indi-
cating a high level of user-friendliness. This score is particularly significant as it remained
consistent regardless of the participant’s age, educational background, familiarity with
touch devices, or MCI diagnosis. Furthermore, there was a notable correlation between the
SUS score and VST performance (r = −0.496, p = 0.000), suggesting that better usability is
associated with more accurate cognitive assessment [86].

Therefore, the development of cognitive screening tools like the VST must prioritize
UX design [87,88]. Good UX not only facilitates broader accessibility and usability among
diverse user groups but also ensures the integrity and validity of the data gathered, which
is essential for accurate diagnosis and effective monitoring of conditions like MCI.

Hence, but not surprisingly, user-centered design and evaluation are crucial in clar-
ifying and adjusting the level of detail in web-based decision aids for individuals with
MCI [89]. This is important because usability studies have shown that users with MCI
require more time and help to complete tasks and that the speed of audio help can signifi-
cantly impact performance [90].

However, these findings have further implications for tools that can detect (with sub-
millisecond precision) slowness of reaction time, serving as potential biomarkers for bradyki-
nesia (slowness of movement). Thus, while it is important to make web-based tools easy for
people with MCI to use, these tools can also detect slow reaction times (Table 5). This slowness
is a key sign of bradykinesia, which is often seen in neurodegenerative diseases.

Table 5. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Altoida App Digital biomarkers
Mild cognitive

impairment (MCI)
detection

AUC = 0.92 [79–81]

VR (Smart Aging
Serious Game-SASG)

Cognitive health
assessment

MCI and Vascular
Cognitive Impairment

(VCI) diagnosis

Diagnostic sensitivity and
specificity (AUC > 0.80),

Accuracy: 75–91%
[83,84]

VR (Virtual
Supermarket Test) and

Wearable EEG
EEG rhythms

Cognitive decline in
MCI

Elevated EEG rhythms
associated with cognitive tasks

in VR
[85]

VR (Virtual
Supermarket Test) and

System Usability
Scale (SUS)

Usability assessment
Usability and cognitive

assessment accuracy

SUS score: 83.11/100,
Correlation between SUS score

and VST performance:
r = −0.496

[86]
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12. Digital Tools Can Detect Slowness of Reaction Time

Interestingly, slower task completion by users with mild cognitive impairment is not
just a challenge but somehow obviously an important feature that can be leveraged for
early detection.

These findings align with the study by Donoghue et al. (2012), which showed an
association between functional mobility, as measured by the Timed Up-and-Go (TUG) test,
and various cognitive functions. Their analysis revealed that slower TUG performance is
independently associated with poorer global cognition, executive function, memory, and
slower processing speed [91].

Importantly, simple reaction time (SRT) decline is visible not only in advanced stages
of AD or PD but also in individuals with MCI (a risk factor for PD and AD), therefore being
possible early digital biomarkers of those diseases. This is supported by a meta-analysis
by Andriuta (2019), who analyzed seven selected studies with a total of 327 participants
with MCI and 468 healthy controls (HCs); the mean SRT was significantly (p = 0.0217)
longer in the MCI group (by 11%) than in the HC group [92]. This observation is crucial
because slower response times, often consistent with cognitive impairment, can be precisely
captured on web platforms.

Web platforms can measure reaction times and task completion speeds in milliseconds,
turning into a part of digital phenotype. This finding is further supported by our recent
study (2023) that involved collecting cognitive and behavioral data from PD patients and
healthy controls [93]. Here, an online platform helped to collect the time between the screen
appearing and the participant’s first option selection (instrumental reaction time—IRT) and
the time it takes for the participant to click the submit button (time to submit—TTS). The
key finding was that IRT and TTS were significantly slower (p < 0.001) in the PD group
compared to healthy controls, especially in tests like the MoCA and Epworth Sleepiness
Scale and beyond the healthy age-related decline of the reaction time [93].

Moreover, research in the literature highlights the significant potential of online plat-
forms and mobile devices in measuring reaction times and task completion speeds, key
indicators of cognitive and behavioral changes. Already in 2011, Cinaz et al. explored
wearable devices as tools for measuring reaction times, particularly in the context of ev-
eryday cognitive functioning, and concluded that they are feasible to measure changes in
reaction times [94]. That is supported by Burke (2017), who demonstrated that devices like
the Apple iPad and iTouch can accurately measure reaction times [95]. Bonnechère (2022)
extended this work by using cognitive mobile games to assess the evolution of reaction
times across different tasks [96]. These studies collectively underscore the versatility and
practicality of digital devices in cognitive monitoring.

This finding aligns with the research by Roos J. Jutten et al. (2022), which investigated
fluctuations in reaction time (RT) performance as a marker of early amyloid-related neu-
rodegeneration in preclinical Alzheimer’s Disease. Their study employed computerized
cognitive testing to measure intraindividual variability in RT (IIV-RT) over some months,
using tasks of varying complexity. They found that greater IIV-RT, especially in com-
plex RT tasks, was associated with steeper cognitive decline in individuals with elevated
AD biomarkers [97]. Therefore, incorporating these metrics into clinical assessments can
provide valuable insights into the early stages of neurodegenerative diseases, enhancing
diagnostic strategies and patient care.

However, Schatz (2015) emphasized the need for careful validation and calibration of
these digital tools, particularly tablet-based devices, to ensure accurate reaction time assess-
ments [98]. This highlights an essential consideration in the development and application
of these technologies. Nevertheless, when introduced properly, even the casual card game
Klondike Solitaire may measure time-related values (like time spent on thinking of a move)
that can be useful in distinguishing games played by older people with MCI from their
healthy peers (AUC > 0.877), as presented by Gielis (2021) [99].

Therefore, the slower performance seen in PD patients is not a drawback but a useful
clue about the disease’s progress, helping build a ‘digital phenotype’ that improves early di-
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agnosis. In line with this, digital versions of tests like the MoCA, Epworth, or TMT can add
time-related measurements, making digital tools like user-friendly mobile apps valuable
for spotting early signs of diseases like PD or AD (Table 6). Moving to a broader context,
web and mobile technologies stand out as affordable options for checking cognitive health.

Table 6. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Timed
Up-and-Go
(TUG) test

Functional
mobility, global

cognition,
executive function,

memory,
processing speed

Cognitive
impairment

detection

Slower TUG
performance

associated with poorer
cognitive functions

[91]

Web Platforms
Simple reaction

time (SRT)

Early detection
of cognitive

decline

MCI group showed
11% longer SRT than

healthy controls
(p = 0.0217)

[92]

Online
Platforms

Instrumental
reaction time (IRT),

time to submit
(TTS)

Parkinson’s
Disease

cognitive and
behavioral data

IRT and TTS
significantly slower in
PD group (p < 0.001)

[93]

Wearable
Devices and

Mobile Devices

Reaction times in
daily cognitive

functioning

Cognitive
monitoring

Wearables and devices
like iPad/iTouch

feasible for measuring
reaction times

[94,95]

Cognitive
Mobile Games

Evolution of
reaction times

across tasks

Cognitive health
monitoring

Mobile games used to
assess and monitor

reaction time changes
[96]

Computerized
Cognitive

Testing

Intraindividual
variability in
reaction time

(IIV-RT)

Early
amyloid-related
neurodegenera-

tion

Greater IIV-RT
associated with steeper

cognitive decline in
preclinical AD

[97]

Tablet-based
Devices

Reaction time
assessment

Validation and
calibration of
digital tools

Need for careful
validation to ensure
accurate assessments

[98]

Digital Card
Game

(Klondike
Solitaire)

Time spent on
thinking of a move

Differentiating
cognitive

impairment

Can distinguish MCI
from healthy peers

(AUC > 0.877)
[99]

13. Web and Mobile Technology Are Affordable Tools for Screening Cognitive Deficits

Recent findings suggest that in the context of the early detection of cognitive decline,
the potential of mobile applications is substantial. As Thabtah (2020) noted, some of these
apps employ advanced techniques like machine learning and AI to enhance diagnostic accu-
racy [100]. This approach expands access to early cognitive health assessments, benefiting
a broader population segment, including those in underserved areas.

Consequently, digital applications (utilizing smartphones and wearables) hold signifi-
cant promise as accessible, affordable, and equitable tools for screening cognitive deficits.
Chinner (2018) and Naslund (2017) highlight how these tools, by leveraging widely avail-
able technology, become practical even in resource-limited settings and offer an affordable
alternative to traditional diagnostic methods [101,102]. These methods are particularly
effective in supporting clinical care and promoting treatment adherence, especially in low-
and middle-income countries.

Moreover, the web-based cognitive testing approach presented in “cCOG: A web-based
cognitive test tool for detecting neurodegenerative disorders” explores the effectiveness
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of a web-based cognitive tool in detecting mild cognitive impairment and dementia for
standardized screening in neurodegenerative disorders [103]. The computerized test battery
was based on the three classical cognitive tasks: a modification of the wordlist test, a simple
reaction task, and the Trail Making Test. It was divided into seven tasks to complete in
approximately 20 min to complete with a keyboard and mouse or a touchscreen. Analyzing
clinical data from three European cohorts, including 306 cognitively normal, 120 MCI, and
69 dementia subjects, the study compared the global cognitive scores derived from standard
neuropsychological tests. The tool demonstrates accuracies (ROC-AUC) ranging from 0.71
to 0.84 for MCI and 0.86 to 0.94 for dementia when administered both at the clinic and in the
home environment. Hence, the results indicate this tool as a promising and cost-effective
tool for MCI and dementia detection through home-based cognitive assessments.

Web and mobile technologies, through the use of machine learning and AI in apps
and web-based tools, offer affordable, accessible screening options for cognitive deficits,
showing promise in the early detection of neurodegenerative disorders with demonstrated
effectiveness even in resource-limited settings (Table 7). Understandably, the growing use
of mental health applications also brings to the fore challenges concerning evidence-based
guidelines and transparency.

Table 7. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Mobile
applications

Machine
learning and AI

techniques

Early detection
of cognitive

decline

Enhances diagnostic
accuracy, expands

access
[100]

Smartphones
and wearables

Accessibility and
affordability

Screening
cognitive deficits

Practical in
resource-limited

settings, supports
clinical care

[101,102]

Web-based
cognitive testing

(cCOG)

Wordlist test,
simple reaction

task, Trail
Making Test

Detecting MCI
and dementia

ROC-AUC: 0.71–0.84
for MCI, 0.86–0.94 for

dementia
[103]

14. Quality of Digital Health Can Be Enhanced through Standardization

The issue regarding guidelines and transparency is highlighted by Torous (2017),
who emphasizes the need for transparency and trust in the evaluation and use of these
applications, given the concerns about their proliferation and the lack of established guide-
lines [104]. That statement was further supported by de Francisco Carvalho (2019), who
pointed out the necessity of clear ethical guidelines on how information can and should
be used [105]. Thus, while digital applications offer immense potential in the early detec-
tion and diagnosis of cognitive deficits, ensuring their effective and ethical implementa-
tion requires addressing challenges such as evidence-based validation, transparency, and
user trust.

These challenges also include the crucial aspects of data privacy and user engagement.
Ensuring data privacy is vital for patient trust and legal compliance, while maintaining
user engagement is essential for consistent and reliable data collection. Beyond these
practical considerations, ethical implications present additional tension. As Ford, Milne,
and Curlewis (2023) discuss, deploying digital biomarkers and AI at scale raises concerns
regarding accuracy, bias, and equitable access [106]. This is important because to leverage
digital tools effectively in clinical settings, those challenges need to be addressed urgently.

These concerns are critical, as they directly impact the validity and fairness of the
diagnostic process. Hence, while digital applications offer immense possibilities in the
early detection and monitoring of cognitive health, their successful implementation centers
on addressing these multifaceted challenges, ensuring they can be effectively integrated
into healthcare practice.
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In response, recent studies suggest that a consensus on standards in digital health
research could markedly improve the quality of these studies. The lack of consensus
on digital outcome measures and their integration into clinical practice and research has
been noted by other experts, prompting various proposals for standardization. This is
underlined by Bejani et al. (2023), who, moreover, offer strategic insights for the inclusion
of patient-centered digital measures in research [38].

Furthermore, the main critique by Jha et al. (2023), termed the “Single Digital
Biomarker Hypothesis,” revolves around the tendency of current digital measures to
simplify the complexity of PD into a single severity score [107]. The authors argue that PD
is a multi-dimensional, multi-etiologic syndrome that cannot be adequately represented by
a single number. The nuances of individual patient experiences, which can vary widely in
symptoms and progression, are likely to be overlooked by such a reductive approach.

Moreover, Espay et al. (2016) discuss the challenges and opportunities in utilizing
technology for PD diagnosis and treatment [108]. This is an outcome of the vast amount
of data collected and its limited clinical application. Additionally, challenges include the
incompatibility of technology platforms, the need for widespread deployment among
elderly patients, and the complexity of translating big data into clinically relevant insights.
As a solution, Espay et al. (2019) formed The International Parkinson and Movement
Disorders Society Task Force on Technology, which aims to address these issues by promot-
ing the development of open-source and open-hardware platforms for multichannel data
capture [109]. The goal is to create adaptable systems for individualized treatment delivery,
encouraging early detection, tailored therapy, and subgroup targeting for testing disease-
modifying treatments and identifying objective biomarkers for improved longitudinal
tracking of PD.

Still, Assunção (2022) argues for the adoption of a more comprehensive framework.
This framework would assess and communicate the benefits of early interventions, crucially
bridging the gap between the development of disease-modifying therapies (DMTs) and
their practical, clinical applications [30].

An additional critical observation within the literature echoed in practical applications
is the disappearing patient interest in digital solutions over time. It is hypothesized that
such tools may overly focus on the disease rather than the patient, leading to a perceived
lack of value and progressing disengagement. As articulated by Bloem et al. (2020), the
patient centricity of digital tools is imperative for sustained patient engagement [110].

Hence, while standardized, patient-centric approaches in digital health tools enhance
interventions and improve outcomes in neurodegenerative diseases, this might be a good
moment to take a step back and reconsider the algorithms we use. To further refine these
tools, we should delve deeper into the brain’s underlying mechanisms, drawing inspiration
from how our minds work, which, as Turing’s theories and recent psychophysical experi-
ments suggest, might be more about simple rules and pattern recognition than complex,
computational-heavy, AI-driven ‘black box’ methods.

15. Machine Learning Models Support Diagnosis and Monitoring of NDs

It is interesting to note that the brain’s functioning is often compared to that of a
digital computer or a Universal Turing Machine, which processes symbols [111]. However,
psychophysical experiments and our ability to recognize complex objects, such as faces,
in various contexts and lighting conditions suggest otherwise. This argues against sym-
bolic representation and instead supports the idea that concept representation based on
similarities may be a more appropriate model for how the brain works.

Hence, we propose to direct our eyes to Turning’s lesser-known contribution to the
field of developmental biology. Turing proposed that natural patterns like stripes, spots,
and spirals can arise naturally from the interaction of two or more chemical substances,
which he called “morphogens” (that is, the movement of “chemicals” between cells that
causes cells to transform/morph into the next “state”) [112]. This research explores how



Sensors 2024, 24, 1572 20 of 31

complicated patterns, like those seen in zebra stripes, can emerge from relatively elementary
biochemical processes.

Applying this concept to brain development, Turing’s theory suggests that complex
structures and patterns in the brain could emerge from simple, preprogrammed rules at the
cellular level. This perspective contrasts with the view of the brain as a Universal Turing
Machine, which implies a more fixed, predetermined computational process. Importantly,
the shift from viewing the brain as a rigid, symbol-processing Universal Turing Machine to
a more fluid, self-organizing system, as suggested by Turing’s morphogenetic principles,
allows for a more nuanced understanding of cognitive processes.

Interestingly, this approach resonates with the research of Levin et al. (2021) who
created the first living robots, known as xenobots [113]. Levin’s research explores how cells
can self-organize into complex structures and forms using basic rules. Using xenobots, he
presents how individual cells self-organize into complex tissues and morphologies. This is
important in the context of NDs, because changes in cellular patterns and processes could
be detectable before clinical symptoms arise, enabling earlier intervention and potentially
more effective treatment. Additionally, understanding how cells communicate and organize
themselves to regenerate tissue can inform strategies to promote neural regeneration in
neurodegenerative diseases.

Therefore, we suggest that the idea of using logical rules for object classification
resonates with Turing’s reaction-diffusion theory and Levin’s work on morphogenesis.
Both emphasize the emergence of complex patterns and structures from simpler rules and
interactions. In the brain, these ‘simpler rules’ could be the logical rules used in Rough-Set
Theory for visual processing.

16. Rough Rules Can Implement Visual System Principia

Interestingly, the anatomical and neurophysiological basis of object shape classification
and the computational properties of the brain can be described by Rough-Set Theory (RST).
Introduced by Pawlak (1982), the RST offers a framework for understanding how the brain
processes complex visual information, despite the imprecise nature of concepts representing
objects’ physical properties [114,115]. This suggests that concept representation based
on similarities rather than symbols may be a more accurate model for how the brain
works [116].

The application of the RST in visual classification involves specific neural interactions.
The visual classification model is based on the receptive field properties of neurons in
different visual areas and uses both feedforward and feedback interactions between them.

• The feedforward pathways use “driver logical rules” to combine properties extracted
in each area into hypotheses related to possible objects.

• The feedback pathways use “modulator logical rules” to help change weak concepts
of objects’ physical properties into crisp classifications in psychophysical space [117].

Hence, this process approximates how the brain utilizes logical rules to transform
blurred object concepts into clear categorizations, mirroring the principles of the RST
(Figure 1).

In higher visual brain areas, the described processes utilize Granular Computing (GrC)
to identify upper and lower approximations of the retinal image. These approximations
are then compared with different objects’ models (images) stored in the visual cortex. As
object recognition or classification progresses, the lower visual areas are tuned to extract
the properties of the selected model (modulator logical rules), and the gap between the
upper and lower approximations narrows. If the border set becomes empty, the object is
successfully recognized. Hence, this approach can be applied to propose various models
that approximate the actual (future) cognitive state of tested subjects.
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Figure 1. The receptive field properties of neurons fed into both feedforward and feedback path-
ways. Feedforward pathways use “driver logical rules” to create hypotheses of possible objects, 
while feedback pathways employ “modulator logical rules” to refine these hypotheses into crisp 
classifications. Higher visual brain areas then utilize Granular Computing (GrC) to compare upper 
and lower approximations of retinal images with stored object models, leading to object recognition 
as the gap between these approximations narrows.

In higher visual brain areas, the described processes utilize Granular Computing 
(GrC) to identify upper and lower approximations of the retinal image. These approxima-
tions are then compared with different objects’ models (images) stored in the visual cortex. 
As object recognition or classification progresses, the lower visual areas are tuned to ex-
tract the properties of the selected model (modulator logical rules), and the gap between 
the upper and lower approximations narrows. If the border set becomes empty, the object 
is successfully recognized. Hence, this approach can be applied to propose various models 
that approximate the actual (future) cognitive state of tested subjects.

Importantly, this theory is further supported by research on macaques. 
Przybyszewski et al. (2000) investigated the back-projection pathways from the striate cor-
tex (V1) to the lateral geniculate nucleus (LGN) [118]. These are connections that go from 
one part of the brain back to an area that supplies input to it. Research shows that these 
back connections make neuron responses stronger, depending on the contrast of what is 
seen. These findings revealed that the way neurons in the LGN react to visual stimuli is 
greatly increased by these back-projection pathways. This happens especially when the 
contrast in the visuals is high. Hence, it shows that the connections from the striate cortex 
to the LGN play a big part in how well neurons respond to different levels of contrast and 
colors in what we see.

Figure 1. The receptive field properties of neurons fed into both feedforward and feedback path-

ways. Feedforward pathways use “driver logical rules” to create hypotheses of possible objects,

while feedback pathways employ “modulator logical rules” to refine these hypotheses into crisp

classifications. Higher visual brain areas then utilize Granular Computing (GrC) to compare upper

and lower approximations of retinal images with stored object models, leading to object recognition

as the gap between these approximations narrows.

Importantly, this theory is further supported by research on macaques. Przybyszewski
et al. (2000) investigated the back-projection pathways from the striate cortex (V1) to the
lateral geniculate nucleus (LGN) [118]. These are connections that go from one part of the
brain back to an area that supplies input to it. Research shows that these back connections
make neuron responses stronger, depending on the contrast of what is seen. These findings
revealed that the way neurons in the LGN react to visual stimuli is greatly increased by
these back-projection pathways. This happens especially when the contrast in the visuals is
high. Hence, it shows that the connections from the striate cortex to the LGN play a big
part in how well neurons respond to different levels of contrast and colors in what we see.

Therefore, these new insights fit well with the Rough-Set Theory-based models of
visual processing. These predictive models, developed based on clinical studies, reveal
various patterns of neurodegenerative diseases, analogous to the visual representation of
complex objects in higher visual cortical areas.

However, given the variability in symptoms among patients, it is necessary to have
adaptive mechanisms that can accommodate the approximate and flexible nature of these
variations. Hence, a critical question remains: how can these mechanisms identify objects
or their elements in new conditions, especially in the context of identifying diseases with
unseen preliminary indications?

To address this challenge, a novel approach has been proposed, which extends the
classical definition of the receptive field (RF) to a fuzzy detector. The properties of the
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RF are further defined by the computational attributes of the bottom-up and top-down
pathways, which compare the stimulus against multiple predictions.

17. Fuzzy Detectors as Possible Predictive Models of NDs

By using this new approach, it is possible to detect and recognize objects in different
conditions, including those that are unseen. This approach can also be used to identify the
presence of neurodegenerative diseases in patients, even when the symptoms vary between
individuals. Hence, a fuzzy detector is a promising tool for developing more accurate and
effective predictive models for neurodegenerative diseases, which can help to improve
diagnosis and treatment.

That is an insightful observation because the utilization of AI methods to generalize
and intellectualize patients’ symptoms could be a game-changer in detecting preclinical
indications of neurodegenerative diseases such as PD and AD. By creating models based
on granular computing approaches, AI can use these models as references to classify
potential preclinical indications of ND. This approach could open new possibilities for
preventing or curing neurodegenerative brain pathologies, potentially leading to more
effective treatments for these devastating conditions.

The aim is to utilize the insights of movement disorder specialists to identify significant
attributes of NDs for AI-based classification. Therefore, a project by Przybyszewski et al.
(2021) employing a combination of Theory of Mind (ToM) and supervised learning, based
on granular computing (GrC) and Rough-Set Theory, seeks to emulate the expertise of
movement disorder specialists. This system is based on a computing approach that uses
Rough-Set Theory and abstract granules to represent the ToM of many movement disorder
experts. It identifies similarities between granules obtained from one group of more
advanced PD patients to estimate the disease progression of other patients. While it was
found that the accuracy of prediction increased with disease progression, it is noted that
divergent sets of granules characteristic of different parts of the brain might degenerate
in different ways with disease progression [117]. The exploration of various AI methods
further underscores this field’s potential.

To challenge this method, researchers have compared different AI methods, including
GrC as implemented in Rough-Set Theory (RST) and fuzzy Rough-Set Theory (FRST) [119].
These methods were compared with other classical machine learning techniques for predict-
ing PD progression, including Nearest Neighbors, Decision Tree, Random Forest, Support
Vector Classification, and Gradient Boosting. Dutta and Skowron (2021) have used complex
granules (c-granules) to model longitudinal disease development, finding that the RST
provides the best estimations of disease progression [120]. The study found that the RST
gave the best estimations of disease progressions measured as accuracies, while the FRST
gave smaller values of accuracies but better global coverage. Other AI methods gave simi-
lar results but only when looking for the disease progression without or with medication
separately, indicating their limitations in looking for longitudinal PD progressions [121].

It is fascinating to see the potential of machine learning models, including Rough Sets,
in predicting the optimal treatment for NDs. A further example is a study by Przybyszewski
et al. (2020) analyzing patients under different treatments, which achieved varying degrees
of accuracy, suggesting the potential to discover universal rules for PD progression [122].
The research presents an overall accuracy of 70% for medication visits, 56% for DBS (deep
brain stimulation), and 67% and 79% for post-op second and third visits, respectively. This
exploration highlights the exciting possibilities of AI and machine learning in advancing
our understanding and management of neurodegenerative diseases, potentially leading to
more tailored and effective treatments (Table 8).
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Table 8. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Theory of Mind
(ToM) and
Granular

Computing
(GrC)

Granules
representing

expertise

PD progression
prediction

Accuracy increases
with disease

progression; identifies
granule differences in

brain degeneration

[117]

AI Methods
Comparison

(GrC, RST, FRST)

Disease
progression
modeling

PD progression
prediction

RST showed best
accuracy; FRST

provided better global
coverage; limitations

in longitudinal
progression with other

AI methods

[120]

Machine
Learning Models

Treatment
outcome

prediction

Optimal
treatment for

NDs

Accuracies: 70% for
medication, 56% for

DBS, 67% and 79% for
post-op visits

[122]

18. Intelligent Granular Computing (IGrC) Can Predict Cognitive Patterns

Cognitive symptoms are more dominant in Alzheimer’s Disease, whereas motor
symptoms are more pronounced in Parkinson’s Disease. A study using an IGrC approach
examined the relationship between cognitive and motor symptoms in PD, revealing that
cognitive changes are independent of motor symptom development [123].

The study involved 47 Parkinson’s Disease patients who underwent eye movement,
neurological, and neuropsychological tests in two sessions: S#1—without medications
(MedOFF) and S#2 after taking medications (MedON). The patients were divided into
two groups: Gr1 (less advanced) and Gr2 (more advanced). By applying different sets of
rules to different visits, the researchers found that cognitive changes are independent of
the motor symptoms’ development.

It is interesting to note that there seems to be a link between depressive symptoms
and neurodegenerative diseases. In the case of Parkinson’s Disease, for example, there is
a reduction in the level of the reward hormone dopamine, which can lead to a decrease
in positive emotional experiences and an increase in depression. On the other hand, in
older individuals (over 65 years of age) who experience depression, there is a higher risk
of developing late-onset Alzheimer’s Disease (LOAD). The research aims to evaluate this
relationship’s strength.

AI and machine learning, including Rough-Set Theory, have been employed to classify
patients’ symptoms in PD. The study involved testing 24 patients with Parkinson’s Disease
(PD) who were only receiving medical treatment (BMT-group) and 23 patients with PD
who were receiving both medical treatment and deep brain stimulation (DBS-group), as
well as 15 older patients who had been receiving DBS treatment for one and a half years
(POP-group). The patients were tested every six months (W1, W2, W3) using a range of
neurological (disease duration, Unified Parkinson’s Disease Rating Scale), neuropsycho-
logical (depression-Beck test, PDQ39, Epworth), and eye movement (reflexive saccadic)
tests. Using RST, the researchers were able to identify rules from the BMTW1 data (patients
receiving only medical treatment during their first visit) that allowed them to predict
UPDRS scores for BMTW2 and BMTW3 with accuracies of 0.765 (0.7 without Beck test of
depression result) and 0.8 (0.7 without Beck result), respectively [123].

They were also able to use these rules to predict disease progression (UPDRS) in a
group of patients in the DBSW1 group with an accuracy of 0.765. Using the rules generated
from the DBSW2 data, the researchers were able to predict UPDRS scores for the DBSW3
(acc. = 0.625), POPW1 (acc. = 0.77), POPW2 (acc. = 0.5), and POPW3 (acc. = 0.33)
groups [124]. By adding the depression attribute and using GrC, the researchers were able
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to make more accurate predictions about disease progression in a range of patient groups
compared to predictions made without this attribute (Table 9).

Table 9. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

IGrC Approach
Cognitive and

motor symptoms
PD symptom
classification

Cognitive changes
independent of motor

symptoms development
[123]

AI and Machine
Learning (RST)

Neurological,
neuropsycholog-

ical, eye
movement tests

PD symptom
classification

and depression’s
impact

UPDRS prediction
accuracies:

BMTW2 = 0.765,
BMTW3 = 0.8,

DBSW1 = 0.765,
DBSW3 = 0.625,
POPW1 = 0.77,
POPW2 = 0.5,
POPW3 = 0.33

(improved with
depression attribute)

[123]

19. AI and Machine Learning Can Predict Symptoms and Progression of NDs

Recent findings suggest that AI methods predict cognitive patterns in normal subjects,
indicating pre-dementia stages. For example, Przybyszewski et al. (2022) used granular
computing rules to classify cognitive data from the BIOCARD study, which has been
ongoing for over 20 years with 354 normal subjects. The study’s findings suggest that AI
methods can predict patterns in cognitive attributes of normal subjects that might indicate
their pre-dementia stage, something that may not be visible to neuropsychologists [125].

Another study based on Biocard data provides a significant advancement in the
detection and prediction of Alzheimer’s Disease, utilizing AI methods to identify early
cognitive changes. Over 20 years, subjects were evaluated annually to determine their
cognitive status—normal, mild cognitive impairment, or dementia. The study used the
Clinical Dementia Rating Sum of Boxes (CDRSUM) as a quantitative index for assessing
mild dementia and developed rough set rules (RSR) for classification. Researchers classified
patients of AD, MCI, and normal, based on their CDRSUM scores. They discovered that
some subjects showed signs of potential cognitive impairment or mild dementia that were
not evident to neuropsychologists. These findings highlight the capacity of AI methods to
detect subtle cognitive changes that might indicate a pre-dementia stage [126].

This approach is a critical step forward in the early detection of AD. By identify-
ing patterns in cognitive attributes among normal subjects, AI methods can reveal early
signs of dementia, offering a window for intervention before the condition becomes
clinically apparent.

Another BIOCARD study utilizes multi-granular computing to refine the process of
classifying cognitive data related to Alzheimer’s Disease, aiming for early detection [127].
Researchers modified the number of attributes used in the BIOCARD study, increasing
the variety of granules from five to seven attributes, compared to the constant fourteen
attributes used previously. This allowed for a more nuanced comparison of classification
results. The focus was also on the interpretability of the rules obtained from different
granular levels. By creating rules with varying granularity and algorithms, the researchers
aimed to identify classifications that are both complete and consistent across different rule
sets. The goal is to develop a more accurate and reliable system for early diagnosis, which
is critical for effective intervention. Researchers are testing various models to determine
the most effective ones for identifying different stages of diseases like Alzheimer’s and
Parkinson’s, and they seek classifications that remain consistent irrespective of the algo-
rithms used [127]. Therefore, the overarching aim is to develop a more precise and reliable
diagnostic system for early intervention.
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Overall, the above studies highlight the potential of digital biomarkers and AI in
detecting the early stages of neurodegenerative diseases like Alzheimer’s and Parkinson’s
(Table 10). The integration of digital tools into clinical practice could revolutionize the way
we diagnose and treat these conditions, ultimately improving the quality of life for millions
of people worldwide.

Table 10. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Granular
Computing

Rules

Cognitive data
classification

Pre-dementia
stage detection

AI methods predicted
pre-dementia stages in
normal subjects from

BIOCARD study

[125]

Clinical
Dementia Rating

Sum of Boxes
(CDRSUM) and
rough set rules

(RSR)

Early cognitive
changes

Alzheimer’s
Disease

detection

Identified subjects
with potential

cognitive impairment
not evident to

neuropsychologists

[126]

Multi-Granular
Computing

Cognitive data
related to

Alzheimer’s
Disease

Early detection
of Alzheimer’s

Disease

Developed more
accurate and reliable

system for early
diagnosis with

varying granularity

[127]

20. Conclusions

AI and digital tools promise to facilitate the early detection of neurodegenerative
diseases, potentially leading to earlier interventions that could slow disease progression.
Studies are being conducted to validate the efficacy of digital biomarkers and AI-based pre-
dictive models in identifying early-stage neurodegenerative diseases. These technologies
could lead to more personalized treatment plans based on individual data patterns.

This review covers the use of digital phenotyping technologies to capture behavioral
information relevant to neurological diseases. Digital endpoints could enhance the precision
of clinical trials, aiding in patient stratification and the detection of treatment effects.
However, the review also points out the need for a standardized approach to study design
to allow for meaningful interpretation of the data collected from various studies.

This standardization would help in comparing results across studies and improving
the understanding of neurodegenerative disease trajectories. Interestingly, despite reported
advancements in healthcare solutions, it was found that the current digital and mobile
health (mHealth) applications are in urgent need of improved functionalities to assist in
both patient care management and early diagnosis of NDs.

Nevertheless, the findings presented in this paper support the idea that telemedicine
solutions could lead to earlier identification of at-risk individuals and may be more sensitive
to disease progression, which is beneficial for discovering disease-modifying treatments.
Within this framework, sensors emerge as a fundamental component, highlighting the
effectiveness of digital phenotyping in enhancing disease characterization and monitoring.
The integration of clinical scales, imaging, biosamples, and digital tools is suggested as the
most effective approach for characterizing and monitoring disease [33].

However, the role of digital tools in improving care, research, and outcomes for
patients with movement disorders suggests that their full potential is yet to be realized.
The care model is perceived as being reactive rather than proactive, with an inadequate
response to complex issues due to a lack of disease-specific expertise and underutilization
of non-pharmacological treatments.

Moreover, treatment plans are usually more disease centric rather than patient cen-
tric, not fully considering the needs and preferences of the individuals affected by these
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conditions. Consequently, patients may find themselves excluded from the clinical decision-
making process, leaving a gap that must be addressed urgently to bring truly meaningful
research outcomes.
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