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Abstract. In this text we compare the measurement results of reflex-
ive saccades and antisaccades of patients with Parkinson’s Disease (PD),
trying to determine the best settings to predict the Unified Parkinson’s
Disease Rating Scale (UPDRS) results. After Alzheimer’s disease, PD
statistically is the second one and until today, no effective therapy has
been found. Luckily, PD develops very slowly and early detection can be
very important in slowing its progression. In this experiment we exam-
ined the reflective saccades (RS) and antisaccades (AS) of 11 PD patients
who performed eye-tracking tests in controlled conditions. We correlated
neurological measurements of patient’s abilities described by the Unified
Parkinson’s Disease Rating Scale (UPDRS) scale with parameters of RS
and AS. We used tools implemented in the Scikit-Learn for data prepro-
cessing and predictions of the UPDRS scoring groups [1]. By experiment-
ing with different datasets we achieved best results by combining means
of RS and AS parameters into computed attributes. We also showed, that
the accuracy of the prediction increases with the number of such derived
attributes. We achieved 89% accuracy of predictions and showed that
computed attributes have 50% higher results in the feature importance
scoring than source parameters. The eye-tracking tests described in this
text are relatively easy to carry out and could support the PD diagnosis.
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1 Introduction

The eyes make projectile movements called saccades when watching surroundings
and fixing on important elements. The reason of this behaviour is in the specifics
of the fovea which is the part of retina responsible for extracting details from the
available view. The fovea is able to receive information only from a small field,
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so eyes must be often moved from between different locations to scan the visible
area [5]. Saccades occur both involuntarily and intentionally and are varied in
terms of range, as we make small saccades when we read and longer when we look
around ourselves. Saccades are common in most of our daily activities and its
mechanism seems to be complex as many brain areas take part in the analysis of
visual information. Therefore saccades seem to be sensitive for neurodegenerative
changes and it is sensible perform tests based on this kind of eve move during
diagnostic connected to diseases like the PD. Several types of tests to study
saccades have been developed, usually consisting calculation of the parameters
while subject moves his eyes from the fixation point to the peripheral target.
One of them is a test for the RS, based on simply move from the fixation point
towards the stimuli and the AS test, based on the reverse action. The AS is
an eye move in the opposite direction of appearing stimulus. The idea is in
suppressing reflexive transfer of the focus to the emerging target and forcing eyes
to look into to the mirror location of the target. As the reflexive eye movement
have to be inhibited, this test is generally more difficult and usually takes more
time than the RS [8]. In terms of the PD disease, various studies have shown
that patients have impaired executive function, including deficits in attention,
movement initiation, motor planning and decision making [10]. It usually leads
to impairments in control of suppression of involuntary behavior, as variety of
neurological diseases result in dysfunctions and errors in this mechanism [13]. It
was found that the degree of advancement of the PD significantly increases mean
latency and error rate in the AS tasks and significantly decreases the velocity
[9,11].

In this experiment we used results of both RS and AS tests of PD patients,
combining them with their results of neurological tests expressed in the UPDRS,
which is most common rating scale of the PD progression. Th UPDRS consists
clinician-scored and monitored personal behavior, mood, mental activity, activi-
ties of daily living, motor evaluation and the evaluation of complications during
the therapy [7]. Unfortunately, most of the patients diverge in their combina-
tions of symptoms, which leads to constant need of development in methods of
evaluation of the disease progression.

In this experiment we researched different datasets containing results of RS
and AS of PD and tried to find the best features system to predict clinically-
scored attribute, the UPDRS Total. The UPDRS Total represents all sections of
the UPDRS evaluation, therefore it is considered as a good generalization of the
PD progression. We are investigating methods of predictions that could extend
information about patients, could be automated and be available for everyone
on personal devices like PC or Smart-Phone.

2 Methods of the Experiment

We performed tests with 11 patients in one of neurosurgical clinic. Patients dif-
fered in terms of the disease treatment. Also our data distinguished patients
who were treated with pharmaceuticals (BMT - Best Medical Treatment) and
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patients who underwent an electrode implantation. (DBS - Deep Brain Stim-
ulation). Implanted electrode stimulates patient’s Subthalamic Nucleus (STN),
an area of the brain that has a strong effect on the dopaminergic system, dam-
aged as a result of the PD. Patients qualified for the neurosurgery are mostly
characterized by the low sensitivity to the stabilizing effects of the L-Dopa [14].
Variants of patients session are presented in the list below:

− Sesion type 0 : BMT off, DBS off
− Sesion type 1 : BMT off, DBS on
− Sesion type 2 : BMT on, DBS off
− Sesion type 3 : BMT on, DBS on

We performed test with a head-mounted eye-tracker, the JAZZ-Novo. This
device works in frequency of 1000 Hz, thus provides very high spatial and tempo-
ral resolution needed to carry out this kind of experiments. The location of the
sensor on the subject’s forehead allowed for compensation of a head and body
movements, which is very important during eye-tracking measurements of the
PD patients because of involuntary quivering movements (the tremor). Exper-
imental attempts consisted of tracking the light marker, moving in horizontal
directions behind patient’s eyes. Both the RS and the AS attempts started from
fixating in the initial position (0◦). When fixation point disappeared at the same
moment targets of the RS (green eclipses) or the AS (red ellipses) revealed to
the patient 10◦ to the left or right. Patient task was to move eyesight on the
appearing target (RS) or in the opposite direction (AS) with the highest preci-
sion and shortest latency. Next attempt started after 100 ms without any break
(“no-gap” model introduced by Saslow) [15]. Schema on Fig. 1 presents both
models of the RS and the AS trials.

Fig. 1. The models of oculometric tests: A: The reflexive saccade, B: The antisaccade.

All tests were conducted in the same room with the same lighting. From
the eye-tracking data (time series of eye positions) we algorithmically calculated
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different parameters of the RS and the AS - mean delay, mean duration and
maximum speed. We used windows as a search space of the eye moves with
the beginning and the end designated by appearance and disappearance of the
peripheral target. Depending on the test type, algorithm expected straight move
between fixation point and the target (RS) or to the opposite direction (AS) -
both below the latency of 500 ms. All records not passing the requirements of
move direction and latency, including missed records (blinks, head movements,
etc.) have not been qualified for further analysis.

3 Computational Basis

As mentioned before, the subject of the calculation from the eye tracker data
were mean latency, mean duration and max speed (because we think that max
speed is better for overviewing the eye performance than the average speed).
We calculated the latency as a difference in time between showing the target
and starting the eye movement and the beginning of a duration from the start-
ing point when eyes began to follow the target and when simultaneously the
eye speed started to rise. The end of the duration was determined by the eye
movement inhibition. The means of those two parameters were calculated arith-
metically for each patient. The max speed was counted as the maximum value
determined in the period of the eye move duration.

After performing oculometric tests and calculations we created the dataset
from parameters of the RS and AS data performed in different sessions. As pre-
viously mentioned, the neurological data was expressed in the attribute UPDRS
TOTAL. The dataset contained 52 records (26 RS/26 AS) collected from 11
patients. Patients differed between methods of the treatment, so it was not pos-
sible to collect data of the same patient in each of the session type, this why.

The oculometric parameters were calculated for each eye separately. The
dataset contained additional features: standard deviations of the mean param-
eters (latency and duration) and attributes representing the number of frames
on the basis of which given oculometric parameter was calculated (for particular
record). The Table 1 presents the examples of rows of the initial dataset.

Table 1. The example of dataset before preprocessing

id updrs sess type mtre stre mspre mrdur stdredur delay r cn ms r cnt dur r cnt

1 55 0 RS 0.265 0.043 5.068 1.951 1.224 2 8 4

1 55 0 AS 0.296 0.055 5.427 4.372 0.785 5 30 15

2 52 1 RS 0.422 0.073 5.240 4.014 1.703 3 17 8

2 52 1 AS 0.376 0.071 5.641 2.965 1.760 7 19 9

Where columns: “id” is a patient number, “sess”, “type” describes types of the session and
test, “mtre”, “stre” - mean and standard variance for latency, “mrdur”, “stdredur” - mean
and standard variance for duration, mspre, max speed and delay r cn, ms r cnt dur r cnt
are frame counters corresponding to the parameters. Presented eye move parameters were
calculated separately for each eye
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In the next phase, the dataset has been preprocessed by several methods
implemented in the scikit-learn [1]. First we obtained matrix (“X”) contain-
ing all the feature values of all instances in the dataset, excluding the target
attribute UPDRS. The target attribute data (“y”) was discretized using pan-
das “cut” method into 5 bins (classes) [2]. Then in the matrix “X” we aligned
the scales of attribute values using scikit-learn’s “Standard Scaler” which stan-
dardizes features by removing the mean and scaling to unit variance [1]. As
discretized “y” class bins differed in number of records (from 4 to 17 items), we
used Synthetic Minority Over-sampling Technique (SMOTE) to oversample the
dataset with number of neighbours depending on number of items in the smallest
group [1]. After the oversampling the “X” contained an equal (17) number of
records for each of the five classes of discretized UPDRS. The number of records
has increased by 38% from 52 to 85. Next, because we wanted to compare dif-
ferent combinations of dataset in terms of predictions accuracy, we generated 2
additional matrices separating the RS records from the AS. We also created 2
copies of initial “X” matrix in order to add new features. We wanted to check
the accuracy of prediction when we average the results of particular patient -
regardless the session and the test type. In order to do that, we calculated and
combined means for particular patients on the basis of the eye move parameters
and added it to first copy of the matrix in number of 4, and to the second copy
in number of 8 new features. We also unified eye move parameters for both eyes
in those two datasets. Table 2 presents the differences in the features between
different datasets. In the next stage we split each of the 5 versions of the dataset
into training and test/validation sets using Stratified Shuffle Split (SSS). The
SSS returns stratified and randomized folds with preserved percentage of sam-
ples for each class. In stratified sampling the data is divided into homogeneous
subgroups (“stratas”) and the right number of instances is sampled from each
stratum to guarantee that the test and training sets are representative [1].

Table 2. The comparison of the features for different datasets

RS AS RS+AS RS+AS+ 4 RS+AS+8 Features

N N Y Y Y Contains oculometric test type parameter

Y Y Y N N Separated parameters for left/right eye

N N N Y Y Unified parameters for both eyes

N N N Y Y Calculated attributes from source parameters

Where RS is the dataset containing only saccade and AS only antisaccade data, RS+AS,
+4/+8 contain both types of test and respectively 4 and 8 new attributes computed from
means of parameters for the patient, regardless oculometric test type and session.

4 Results

With prepared 5 versions of datasets we started supervised learning using differ-
ent classifiers implemented in the scikit-learn, as we decided to check predictions
using different methods:
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– Nearest Neighbors
– Support Vector Machine
– Decision Tree
– Random Forest
– Multi-Layer Perceptron
– Naive Bayes
– Quadratic Discriminant Analysis
– Gaussian Process

For each of listed classifiers we used the GridSearchCV (GSCV), the fea-
ture implemented in scikit-learn for searching possible best values of hyper-
parameters. The GSCV performs exhaustive search over parameters values opti-
mized by the cross-validation returning various types of scoring and also best
values of parameters [1]. For ranking different input variants we used GSCV
“best score” which is a calculation of cross-validated mean score of the best
estimation achieved for particular classifier [1]. Table 3 shows score ranking for
different datasets and classifiers.

Table 3. The prediction score ranking for different datasets

Dataset type Best classifier Score

Only RS QDA 0.68

Only AS QDA 0.75

RS + AS Decision tree 0.61

RS + AS+ 4 combined features Decision tree 0.77

RS + AS+ 8 combined features Decision tree 0.89

As we can see in Fig. 3 the Quadratic Discriminant Analysis (QDA) per-
formed the highest accuracy predictions for smaller and simpler datasets con-
taining only the RS or only the AS. Discriminant analysis is research method
where the criterion (or the dependent variable) is divided into categories and the
predictor (or the independent variable) is an interval in nature. The quadratic
decision boundary determining the division criterion is set by Bayes rule which
fits conditional densities of a class to the data. The QDA have no assumption
that the covariance of each of the classes is identical, also doesn’t require any
hyper-parameter tuning. For larger datasets consisting both the RS and the AS,
the best predictions were obtained by the Decision Tree. As can bee seen in
the Table 3, its accuracy rises linearly, dependently on number of added features
computed on basis of the oculometric parameters (described in the previous
section). Figure 2 is showing the confusion matrix of this dataset, obtained with
the Decision Tree classifier [1].

We also examined feature importance between different datasets. Figure 3
shows 5 most important features for the Decision Tree (the best ranked classifier)
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Fig. 2. The confusion matrix of the total UPDRS.

in 3 different variants of large dataset (containing both the RS and the AS data).
As can be seen on the charts, computed features occupy a high places in the
ranking of top 5 important features and their position and number increases
with the number of such parameters added into the dataset.

5 Discussion and Conclusions

In the results we can see that computed attributes specifying joined results of
the patient are more sensitive in predicting scoring group of the total UPDRS,
than standard parameters (Fig. 3). What can be noticed, with the number of
computed attributes added, the accuracy of the prediction increases, as well as
the importance of those attributes. Attributes “redur join” being the average of
the patient’s results in terms of eye move duration and “stre join” - the average
of standard deviations of patient’s latency results, played the most important
role in the predictions in terms of the most accurate results.

Also importance scoring for those attributes seems to be much higher than
for standard ones. Attribute “sess” describing type of the session, previously the
most important decision attribute, in the final shape of the dataset plays only the
third role in the importance ranking, with a 50% worse scoring result than the
best computed attribute. The results obtained using final dataset suggests that
we can increase the sensitivity of the UPDRS groups prediction by increasing
the dataset with combined attributes, representing the averages of oculomet-
ric parameters from different tests. We think that it can be hypothesized that
combined attributes create an union between same features from different tests
which helps classifiers in prediction and creates bridge between those separated
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Fig. 3. The decision tree feature importance comparison for different datasets.
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results of a patient. Additional attributes have also extended the size of the
dataset and larger sizes of samples can improve the accuracy [16].

We found presented results as very indicating with so small group of records
and the fact that we were able to increase prediction accuracy for our dataset
over 21%. We think that the approach presented in this article can improve the
quality of the UPDRS predictions based on eye movement testing. We also think
that the eye-move performance tests are good indicators of the motor skills of
the PD patients, revealing the scales of disease progression. Our results also
proves the sense of further investigations of correlations between parameters of
different eye movements tests, computed attributes and the UPDRS evaluations.
We hope that development of methods like the one described in this text may
help in improving the PD diagnosis. We believe that in the upcoming future,
oculometric tests combined with the machine-learning pipelines could improve
detection and progression evaluation of the neurodegenerative diseases. If such
tests could be available on personal devices, patients could perform tests under
different conditions providing more information about the disease.

Ethic Statement. This study was carried out in accordance with the recommenda-

tions of Bioethics Committee of Warsaw Medical University with written informed

consent from all subjects. All subjects gave written informed consent in accordance

with the Declaration of Helsinki. The protocol was approved by the Bioethics Com-

mittee of Warsaw Medical University.
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