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Abstract. Parkinson Disease (PD) is the second major neurodegenerative
disease, which causes severe complications for patients’ daily life. PD remains
unspecified in many aspects including best treatment, prediction of its pro-
gression and precise diagnosis. In our study we have built machine learning
(ML) models, which address some of those issues by helping to improve
symptom evaluation precision by using advanced biomarkers such as fast eye
movements. We have built and compared model accuracy relaying on data from
two systems for recording eye movements: one is saccadometer (Ober Con-
sulting), and another is based on the Eye Tribe (ET1000). We have reached 85%
accuracy in prediction of neurologic attributes based on ET and 82% accuracy
with saccadometer with help of rough set theory. The purpose of this study was
to compare ET with clinically approved eye movement measurements sac-
cadometer of Ober. We have demonstrated in 8 PD patients that both systems
gave comparable results based on neurological and eye movement measure-
ments attributes.

Keywords: Data mining � Eye tracking � Parkinson Disease � Rough set theory

1 Introduction

As the one of the most common neurodegenerative diseases we still obtain a lot of
imprecise diagnosis of Parkinson’s Disease. Currently in treatment we rely heavily on
experience of neurologist. Symptoms and disease progression can vary significantly
between patients and it is unclear what is exactly optimal treatment. In our study we
have used ML methods to build classifiers in order to assist in objective assessment of
PD patients using reflexive saccades (RS) as biomarker.

Approaches of using ML in PD assessment have already been carried out, using
variety of biomarkers to improve objective evaluation. For example, in work of Tsanas
et al. [1] we find examples of using speech signal processing which can detect dys-
phonia in PD patients with accuracy reaching 99%. Other studies [2] shows examples
of using machine learning on MRI data in order to classify PD clinically diagnosed
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patients against control group. By analysing voxel data and processing it with classifier
based on Support Vector Machines (SVM) it was possible to reach specificity and
sensitivity above 90%.

Other recent studies [3] show that correlation of few biomarkers can give excellent
results for prediction of early stages of PD. Also highlighting importance of such effort
in treatment. Authors have shown that combination of non-motor features can provide
high accuracy for predicting early PD. Using data from Parkinson’s Progression
Markers Initiative they were able to benchmark few classification approaches reaching
96% accuracy with SVM.

Our own efforts in building automated and doctor independent solution shows that
ML approach could be extremely efficient in classification of PD and help neurologists
in patient assessment. We have used different biomarkers to demonstrate their
importance in PD diagnosis, including DTI imaging [4] and single-photon emission
computed tomography [5]. In most recent works [6, 7] we have shown than RS data
can be used for building intelligent classifiers which reach over 90% accuracy in
predicting PD patient features which make them important biomarker.

In this work we present new approach of recording eye movement data using
software developed by our team based on Eye Tribe (ET) framework. We have built
models using data from two eye tracking systems: clinically approved saccadometer
with a new in the clinic ET. We have demonstrated that a low cost ET framework can
be effectively used in the clinic in order to improve prediction of PD symptoms.

2 Methods

In our study we analysed data of 8 PD patients, in 21 sessions. Every patient had from 1
to 4 sessions. For each patient standard neurological tests were recorded. Each session
determined whether a particular patient has deep brain stimulation (DBS) of subtha-
lamic nucleus or the best medical treatment (BMT) enabled. Patients tested: in session
one (S1) were off DBS and off BMT; in session two (S2) were on DBS and off BMT; in
session three (S3) were off DBS and on BMT; in session four (S4) were both on DBS
and on BMT. Not all patients in our study have recordings for all four sessions
examinations. As a qualification parameter we took quality of eye data captured for
given patient, for given session. Eye data used in this study includes reflexive saccades
(RS) which were recorded using two systems, one from Ober Consulting - sac-
cadometer and another one developed by us on the bases of Eye Tribe (ET) tracker.

During procedure with Ober saccadometer, a patient sat in front of the wall with the
device mounted on his/her head. After starting the procedure the patient saw a red dot
in front of him/her. The dot moved randomly to the left or right, and after about a
second came back to the central position. Patient’s task was to follow fast moving spot,
which is equivalent with performing RS. This experimental protocol was the same for
both devices. By means of Ober saccadometer, data were recorded with sampling
frequency of 1000 Hz.

The ET system has used infrared camera positioned in the front of the patient and
under LCD monitor. Camera tracked positions of each eye separately. Before each
examination patient was asked to perform calibration by performing short fixations on

352 A. Szymański et al.



7 or 9 spots displayed on the screen one by one in different locations. Following the
calibration, the ET procedure were similar to those in Ober device with the difference
that marker in ET set-up was displayed on the LCD screen. Data in ET were sampled
with frequency of 30 Hz.

The process in ET solution is managed with Java application using ET API, pro-
viding build in functions for calibration, predefined and custom procedures for RS and
pursuit eye movements, online preview of current procedure, simplified error correction
and data preview module.

There were following differences in both systems: different stimulus displayed
means, different sampling frequencies and different data presentation methods.
From ET we are receiving signal data with help of provided framework while Ober
produce aggregated static parameters like delay or latency of eye movement averaged
for all saccades. ET method of displaying data is easier to access the raw signal data
from which we can remove artefacts and manually process different data parameters.
Signal data samples from ET are sent to our program every 1 s.

There is another important difference related to placing of these devices. Ober
saccadometer is fixed on patient’s head, while ET camera is positioned in front of
patient under the LCD screen. These differences result in different sensitivities to
artefacts related to patient’s head movements.

Another, mentioned above difference is related to the light stimulus display. Ober
has used a red dot with static spot location, which was jumping by 10-degree to the left
or the right. In ET we use a light spot displayed on LCD screen. Movements of the spot
on the screen were described in details above. Ober saccadometer has software that
automatically calculate saccades attributes and is taking distance from the eye to the
spot into account. In ET it was necessary to measure this distance for each subject that
has strong influence max saccades speed calculations.

Data from ET solution displays simultaneously eye movement measurements and
related movements of the light spot on the screen. We have analysed recorded data by
rewriting algorithms from our previous studies [6] (with help of python with a standard
frameworks like “numpy”). Attributes which we took into consideration included
latencies, max speed and amplitude. All of them described in our previous studies [6].

Both systems had possibilities to measure movement of each eyes separately.
However, in this study we did not take asymmetric eye responses into account,
therefore we have averaged measurements for both eyes. Figure 1 represents an
example of our saccades recording.

In addition to eye movements, we have collected standard neurological parameters
for PD patients like age, sex, Unified Parkinson’s Disease Rating, Hoehn and Yahr
scale, Schwab England scale, PDQ (quality of life measurement) and others. Full index
of used attributes is presented in the input data table in the results section.

We have processed our data with help of the machine learning and data mining
software in order to build classifiers for predicting effects of different treatments
(session number) and total UPDRS. We have used two data mining software: Rough
Set Exploration System [8–10] (RSES) and KNIME.

In KNIME we have built workflow, which applied number of algorithms to our
dataset by at first by binning selected attributes of the input data into the buckets. Size
and type of buckets where specific to each model we built and is noted in the results
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section per classifier. KNIME provide binning methods for numeric values using two
algorithms: equal bin and frequency bin method, first bin values based on minimum
and maximum values to achieve numerically equal subsets while frequency bin try to
perform binning so each subset have equal number of elements.

In RSES binning were implemented using built in discretization function [10],
which included generating local cuts for number attributes excluding symbolic
attributes.

Independently from used method, we have applied n-fold cross validation function,
number of folds were specific for given model and as well as exact process parameters
is noted in the results section.

3 Results

In the first part we built classifiers for predicting total UPDRS. As an input table for our
model we have used data partly shown in Table 1.

We have built model for predicting total UPDRS. In order to verify predictions of
our model (rules) we have used n-fold validation by dividing our set into n groups in
two situations: (1) with- and (2) without-results of the eye movement measurements. In
this way, it was possible to find importance of the reflexive saccades (RS) measure-
ments on our predictions. We have binned total UPDRS into 4 groups with equal
frequency algorithm, as described in the methods section. We have used RSES
applying discretization with local cuts (excluding symbolic attributes) and the decision
tree algorithm with 3-fold cross validation. Accuracy reached without RS data was
38.9%.

Next, we have added to our dataset RS attributes based on ET solution and applied
similar process as for data in the first step. Table 2 presents information table after
discretization.

Fig. 1. This is the plot of eye position in time domain (x-axis). This recording was from the ET
system. On the y-axis are position of eye gaze (ragged) and light spot (squared line)
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As states in Table 2 discretization algorithm selected only few significant attributes
in order to create classification rules. Those included 5 RS attributes not only proving
importance of RS saccades but also showing that ET parameters can be efficient in
building classifier for PD. In contrast to model described in classification of dataset

Table 1. An example of data table for building classifier for total UPDRS in RSES. Legend for
rows: mtre: mean delay right eye, stre: standard deviation for delay in right eye, stdredur/stdledur:
standard deviation for saccade duration in right/left eye, latency_mean: mean latency for both
eyes.

Patient # ‘13/PD/BMT/2013’ ‘14/PD/POP/2010’ ‘55/PD/DBS/2013’ ‘56/PD/DBS/2013’

YearOfBirth 1948 1979 1955 1948
Sex 0 0 0 1

MonthsAfterDBS 18 48 12 12
Weight 61 58 70 88
BMT_dosage 750 400 500 MISSING

UPDRS_I 3 0 3 0
UPDRS_II 20 18 8 7

UPDRS_III 30 53 8 8
UPDRS_IV 2 2 3 2
UPDRS_TOTAL 55 73 22 17

Hoeh & Yahr scale 2.5 3 1 1
SchwabEnglandScale 70 60 90 90

PDQ39 77 34 26 49
AIMS 0 0 11 0
Epworth 9 7 6 12

ET_latency_mean 0.23 0.26 0.24 0.26
ET_latency_sd 0.06 0.09 0.08 0.08
ET_maxspeed_mean 1.73 0.41 0.53 0.97

ET_dur_mean 0.54 0.39 0.44 0.43
ET_dur_sd 0.54 1.04 0.43 0.48

Session ‘S1’ ‘S1’ ‘S4’ ‘S4’

Table 2. Discretized table for building classifier for predicting total UPDRS using ET RS data.
Legend for RS attributes as in Table 1.

Patient # ‘13/PD/BMT/2013’ ‘14/PD/POP/2010’ ‘14/PD/POP/2010’ ‘14/PD/POP/2010’

YearOfBirth (−Inf, 1971.5) (1971.5, Inf) (1971.5, Inf) (1971.5, Inf)

PDQ39 (46.5, Inf) (30.5, 46.5) (30.5, 46.5) (30.5, 46.5)
AIMS (−Inf, 5.5) (−Inf, 5.5) (−Inf, 5.5) (−Inf, 5.5)
ET__mtre (−Inf, 0.27) (−Inf, 0.27) (−Inf, 0.27) (0.27, Inf)

ET__stre (−Inf, 0.055) (0.055, Inf) (−Inf, 0.055) (0.055, Inf)
ET__stdredur (0.3349, Inf) (−Inf, 0.3349) (−Inf, 0.3349) (0.3349, Inf)

ET__stdledur (0.255, Inf) (0.255, Inf) (0.255, Inf) (0.255, Inf)
ET__latency_mean (−Inf, 0.255) (0.255, Inf) (−Inf, 0.255) (0.255, Inf)
Session ‘S1’ ‘S1’ ‘S2’ ‘S3’

UPDRS_TOTAL (39, 64] (64, 95] (22, 39] (39, 64]
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without RS data we were able to achieve 72.2% accuracy, which is significantly better
result.

We have performed another test using RS data from Ober saccadometer, applying
the same method. The discretized table is shown below as Table 3.

As shown in Table 3 attributes significant for building classifier in our model again
relay on RS, also we can note that some of the attributes like latency are used in both
Ober and ET approach. Accuracy for this model was similar to model based on RS
using ET and reached 66.7%.

Next we built model for predicting session number for PD patients. We have
followed similar path as in building classifier for total UPDRS. Results for different
datasets are shown in Table 4.

There are similar trends as in case of prediction of total UPDRS, dataset with no RS
had lowest accuracy. Those with RS data either from Ober or ET have similar accu-
racies; in case of prediction of the session number we are getting even better outcomes
than for total UPDRS. Highest accuracy we have reached using combined dataset
including RS from both ET and Ober systems.

We have combined list of attributes used in classification after discretization pro-
cess of each dataset to show significant attributes used in building our models, those are
shown in Table 5.

In the last step of our study we have run other common ML algorithms using
KNIME on the datasets that proved to give best results in RSES. Additionally we have
calculated other measures such as Cohen’s kappa and Matthews Correlation Coefficient
(MCC). As we can see in Table 5 we are able to reach high accuracy for predicting
total UPDRS using standard algorithms reaching 85.7% and 71.4% respectively for
WEKA decision tree algorithm and random forest (Table 6).

Table 3. Discretized table with RS from Ober.

Patient # ‘13/PD/BMT/2013’ ‘14/PD/POP/2010’ ‘14/PD/POP/2010’ ‘14/PD/POP/2010’

Sc_LatencyMeanLEFT (−Inf, 217.0) (263.0, 330.0) (−Inf, 217.0) (263.0, 330.0)

Sc_AmplitudeRIGHT (10.35, 12.1) (−Inf, 10.35) (12.10, Inf) (−Inf, 10.35)

Sc_PeakVelocityLEFT (335.0, Inf) (335.0, Inf) (335.0, Inf) (335.0, Inf)

Sc_LatencyMeanALL (−Inf, 305.0) (−Inf, 305.0) (−Inf, 305.0) (−Inf, 305.0)

Sc_DurationALL (48.5, Inf) (48.5, Inf) (48.5, Inf) (−Inf, 48.5)

session ‘S1’ ‘S1’ ‘S2’ ‘S3’

UPDRS_TOTAL (39, 64] (64, 95] (22, 39] (39, 64]

Table 4. Result for predicting session number using different classifiers.

Accuracy

No RS data 58.30%
ET RS data 85%
Ober RS data 82.20%
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4 Conclusions

Our study proved that we have successfully used a low cost ET eye tracker for clin-
ically relevant eye movement measurements. We have measured parameters of the
reflexive saccades (RS) and with help of the discretization process choose only relevant
ones. We have built models for predicting PD patient session number as different
treatments effectiveness and total UPDRS as general patient conditions. Our predic-
tions of session number and UPDRS had a high accuracy when ET was used as well as
the commercial saccadometer was utilized.

We have confirmed that fast eye movements are important biomarker for PD. Both
devices, clinically approved Ober saccadometer and adapted by us to the clinical
measurements - Eye Tribe can be used to improve diagnostic of PD symptoms.
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